Gotowa bibliografia na temat „Symmetric varieties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Symmetric varieties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Symmetric varieties"
Bifet, Emili. "On complete symmetric varieties". Advances in Mathematics 80, nr 2 (kwiecień 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.
Pełny tekst źródłaGuay, Nicolas. "Embeddings of symmetric varieties". Transformation Groups 6, nr 4 (grudzień 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.
Pełny tekst źródłaDe Concini, C., i T. A. Springer. "Compactification of symmetric varieties". Transformation Groups 4, nr 2-3 (czerwiec 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.
Pełny tekst źródłaHong, Jiuzu, i Korkeat Korkeathikhun. "Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties". Representation Theory of the American Mathematical Society 26, nr 20 (2.06.2022): 585–615. http://dx.doi.org/10.1090/ert/613.
Pełny tekst źródłaCan, Mahir Bilen, Roger Howe i Lex Renner. "Monoid embeddings of symmetric varieties". Colloquium Mathematicum 157, nr 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.
Pełny tekst źródłaLi, Yiqiang. "Quiver varieties and symmetric pairs". Representation Theory of the American Mathematical Society 23, nr 1 (17.01.2019): 1–56. http://dx.doi.org/10.1090/ert/522.
Pełny tekst źródłaUzawa, Tohru. "Symmetric varieties over arbitrary fields". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, nr 9 (listopad 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.
Pełny tekst źródłaCuntz, M., Y. Ren i G. Trautmann. "Strongly symmetric smooth toric varieties". Kyoto Journal of Mathematics 52, nr 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.
Pełny tekst źródłaPragacz, P. "Determinantal varieties and symmetric polynomials". Functional Analysis and Its Applications 21, nr 3 (lipiec 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.
Pełny tekst źródłaAramova, Annetta G. "Symmetric products of Gorenstein varieties". Journal of Algebra 146, nr 2 (marzec 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.
Pełny tekst źródłaRozprawy doktorskie na temat "Symmetric varieties"
Esposito, Francesco. "Orbits in symmetric varieties". Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/917110.
Pełny tekst źródłaYoung, Ian David. "Symmetric squares of modular Abelian varieties". Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500087.
Pełny tekst źródłamazzon, andrea. "Hilbert functions and symmetric tensors identifiability". Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1133145.
Pełny tekst źródłaMbirika, Abukuse III. "Analysis of symmetric function ideals: towards a combinatorial description of the cohomology ring of Hessenberg varieties". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/708.
Pełny tekst źródłaShu, Cheng. "E-Polynomial of GLn⋊<σ>-character varieties". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7038.
Pełny tekst źródłaLet σ be the transpose-inverse automorphism of GLn so that we have a semi-direct product GLn⋊<σ>. Let Y→X be a double covering of Riemann surfaces, which is exactly the unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering transformation is denoted by τ. To each puncture (removed ramification point), we prescribe a GLn(C)-conjugacy class contained in the connected component GLn(C).σ . And we require the collection C of these conjugacy classes to be generic. Our GLn(C)⋊<σ>-character variety is the moduli of the pairs (L,Φ), where L is a local system on Y and Φ:L → τ*L* is an isomorphism, whose monodromy at the punctures are determined by C. We compute the E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the problem to point-counting over finite fields. The counting formula involves the irreducible characters of GL_n(q)⋊<σ>, and so the l-adic character table of GL_n(q)⋊<σ> is determined along the way. The resulting polynomial is expressed as the in-ner product of certain symmetric functions associated to the wreath product (Z/2Z)^N⋊(S_N), with N=[n/2]
Chen, Jiaming. "Topology at infinity and atypical intersections for variations of Hodge structures". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7049.
Pełny tekst źródłaThis thesis studies topological and geometrical aspects of some interesting spaces springing from Hodge theory, such as locally symmetric varieties, and their generalization, Hodge varieties; and the period maps which take value in them.In Chapter 1 (joint work with Looijenga) we study the Baily-Borel compactifications of locally symmetric varieties and its toroidal variants, as well as the Deligne-Mumford compactification of the moduli of curves from a topological viewpoint. We define a "stacky homotopy type" for these spaces as the homotopy type of a small category and thus generalize an old result of Charney-Lee on the Baily-Borel compactificationof Ag and recover (and rephrase) a more recent one of Ebert-Giansiracusa on the Deligne-Mumford compactification. We also describe an extension of the period map for Riemann surfaces in these terms.In Chapter 2 (joint work with Looijenga) we give a relatively simple algebrogeometric proof of another result of Charney and Lee on the stable cohomology of the Satake-Baily-Borel compactification of Ag and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers.In Chapter 3 (themain chapter of this thesis) we study an atypical intersection problem for an integral polarized variation of Hodge structure V on a smooth irreducible complex quasi-projective variety S. We show that the union of the non-factor special subvarieties for (S,V), which are of Shimura type with dominant period maps, is a finite union of special subvarieties of S. This proves a conjecture of Klingler
Menes, Thibaut. "Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Pełny tekst źródłaLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Petracci, Andrea. "On Mirror Symmetry for Fano varieties and for singularities". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Pełny tekst źródłaPrince, Thomas. "Applications of mirror symmetry to the classification of Fano varieties". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43374.
Pełny tekst źródłaLi, Binru [Verfasser], i Fabrizio [Akademischer Betreuer] Catanese. "Moduli spaces of varieties with symmetries / Binru Li. Betreuer: Fabrizio Catanese". Bayreuth : Universität Bayreuth, 2016. http://d-nb.info/1113107324/34.
Pełny tekst źródłaKsiążki na temat "Symmetric varieties"
Manivel, Laurent. Symmetric functions, Schubert polynomials, and degeneracy loci. Providence, RI: American Mathematical Society, 2001.
Znajdź pełny tekst źródłaFukaya, Kenji. Lagrangian Floer theory and mirror symmetry on compact toric manifolds. Paris: Société Mathématique de France, 2016.
Znajdź pełny tekst źródłaNoriko, Yui, Yau Shing-Tung 1949-, Lewis James Dominic 1953- i Banff International Research Station for Mathematics Innovation & Discovery., red. Mirror symmetry V: Proceedings of the BIRS workshop on Calabi-Yau varieties and mirror symmetry, December 6-11, 2003, Banff International Research Station for Mathematics Innovation & Discovery. Providence, R.I: American Mathematical Society, 2006.
Znajdź pełny tekst źródłaRodríguez, Rubí E., 1953- editor of compilation, red. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces: Conference in honor of Emilio Bujalance on Riemann and Klein surfaces, symmetries and moduli spaces, June 24-28, 2013, Linköping University, Linköping, Sweden. Providence, Rhode Island: American Mathematical Society, 2014.
Znajdź pełny tekst źródłaMumford, David, Avner Ash, Michael Rapoport i Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Znajdź pełny tekst źródłaMumford, David, Avner Ash, Michael Rapoport i Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Znajdź pełny tekst źródłaMumford, David, Avner Ash, Michael Rapoport i Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Znajdź pełny tekst źródłaMumford, David, Avner Ash, Michael Rapoport i Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Znajdź pełny tekst źródłaSmooth compactifications of locally symmetric varieties. Wyd. 2. Cambridge, UK: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Symmetric varieties"
Fulton, William, i Piotr Pragacz. "Symmetric polynomials useful in geometry". W Schubert Varieties and Degeneracy Loci, 26–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096383.
Pełny tekst źródłaKrashen, Daniel, i David J. Saltman. "Severi—Brauer Varieties and Symmetric Powers". W Encyclopaedia of Mathematical Sciences, 59–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05652-3_5.
Pełny tekst źródłaDijkgraaf, Robbert. "Fields, Strings, Matrices and Symmetric Products". W Moduli of Curves and Abelian Varieties, 151–99. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-90172-9_8.
Pełny tekst źródłaHelminck, A. G. "On Orbit Decompositions for Symmetric k-Varieties". W Symmetry and Spaces, 83–127. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4875-6_6.
Pełny tekst źródłaHain, Richard. "Locally Symmetric Families of Curves and Jacobians". W Moduli of Curves and Abelian Varieties, 91–108. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-90172-9_5.
Pełny tekst źródłaMumford, David. "A New Approach to Compactifying Locally Symmetric Varieties". W Selected Papers, 571–84. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4265-7_19.
Pełny tekst źródłaPopov, Vladimir L., i Evgueni A. Tevelev. "Self-dual Projective Algebraic Varieties Associated With Symmetric Spaces". W Encyclopaedia of Mathematical Sciences, 131–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05652-3_8.
Pełny tekst źródłaCiubotaru, Dan, Kyo Nishiyama i Peter E. Trapa. "Regular Orbits of Symmetric Subgroups on Partial Flag Varieties". W Representation Theory, Complex Analysis, and Integral Geometry, 61–86. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4817-6_4.
Pełny tekst źródłaTai, Hsin-sheng. "A class of symmetric functions and Chern classes of projective varieties". W Lecture Notes in Mathematics, 261–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087539.
Pełny tekst źródłaHelminck, Aloysius. "Combinatorics related to orbit closures of symmetric subgroups in flag varieties". W CRM Proceedings and Lecture Notes, 71–90. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/crmp/035/05.
Pełny tekst źródłaStreszczenia konferencji na temat "Symmetric varieties"
Ghorashi, Ali, Sachin Vaidya, Mikael C. Rechtsman, Wladimir A. Benalcazar, Marin Soljačić i Thomas Christensen. "Is Photonic Band Topology Common?" W CLEO: Fundamental Science, FW3M.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3m.8.
Pełny tekst źródłaMakam, Visu, i Avi Wigderson. "Symbolic determinant identity testing (SDIT) is not a null cone problem; and the symmetries of algebraic varieties". W 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2020. http://dx.doi.org/10.1109/focs46700.2020.00086.
Pełny tekst źródła