Gotowa bibliografia na temat „Symmetric/Asymmetric Catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Symmetric/Asymmetric Catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Symmetric/Asymmetric Catalysis"
Wang, Xiao-Chen, Zhao-Ying Yang i Ming Zhang. "Synthesis and Applications of Chiral Bicyclic Bisborane Catalysts". Synthesis 54, nr 06 (19.11.2021): 1527–36. http://dx.doi.org/10.1055/a-1701-7679.
Pełny tekst źródłaDesimoni, Giovanni, Giuseppe Faita i Karl Anker Jørgensen. "C2-Symmetric Chiral Bis(Oxazoline) Ligands in Asymmetric Catalysis". Chemical Reviews 106, nr 9 (wrzesień 2006): 3561–651. http://dx.doi.org/10.1021/cr0505324.
Pełny tekst źródłaHenderson, Alexander S., John F. Bower i M. Carmen Galan. "Carbohydrate-based N-heterocyclic carbenes for enantioselective catalysis". Org. Biomol. Chem. 12, nr 45 (2014): 9180–83. http://dx.doi.org/10.1039/c4ob02056a.
Pełny tekst źródłaLitwinienko, Grzegorz, Gino A. DiLabio i K. U. Ingold. "A theoretical and experimental investigation of some unusual intermolecular hydrogen-bond IR bands — Appearances can be deceptive". Canadian Journal of Chemistry 84, nr 10 (1.10.2006): 1371–79. http://dx.doi.org/10.1139/v06-097.
Pełny tekst źródłaRuppel, Joshua V., Xin Cui, Xue Xu i X. Peter Zhang. "Stereoselective intramolecular cyclopropanation of α-diazoacetates via Co(ii)-based metalloradical catalysis". Org. Chem. Front. 1, nr 5 (2014): 515–20. http://dx.doi.org/10.1039/c4qo00041b.
Pełny tekst źródłaCostabile, Chiara, Stefania Pragliola i Fabia Grisi. "C2-Symmetric N-Heterocyclic Carbenes in Asymmetric Transition-Metal Catalysis". Symmetry 14, nr 8 (5.08.2022): 1615. http://dx.doi.org/10.3390/sym14081615.
Pełny tekst źródłaCastillón, Sergio, Carmen Claver i Yolanda Díaz. "C1 and C2-symmetric carbohydrate phosphorus ligands in asymmetric catalysis". Chemical Society Reviews 34, nr 8 (2005): 702. http://dx.doi.org/10.1039/b400361f.
Pełny tekst źródłaVogl, Erasmus M., Shigeki Matsunaga, Motomu Kanai, Takehiko Iida i Masakatsu Shibasaki. "Linking BINOL: C2-symmetric ligands for investigations on asymmetric catalysis". Tetrahedron Letters 39, nr 43 (październik 1998): 7917–20. http://dx.doi.org/10.1016/s0040-4039(98)01756-0.
Pełny tekst źródłaAl-Majid, Abdullah M., Brian L. Booth i Jonnes T. Gomes. "C2-Symmetric Ligands for Asymmetric Catalysis based on Feist's Acid". Journal of Chemical Research, nr 2 (1998): 78–79. http://dx.doi.org/10.1039/a706185d.
Pełny tekst źródłavan Slagmaat, Christian A. M. R., Khi Chhay Chou, Lukas Morick, Darya Hadavi, Burgert Blom i Stefaan M. A. De Wildeman. "Synthesis and Catalytic Application of Knölker-Type Iron Complexes with a Novel Asymmetric Cyclopentadienone Ligand Design". Catalysts 9, nr 10 (22.09.2019): 790. http://dx.doi.org/10.3390/catal9100790.
Pełny tekst źródłaRozprawy doktorskie na temat "Symmetric/Asymmetric Catalysis"
Axe, Philip. "Pseudo-C3-symmetric titanium complexes for asymmetric catalysis". Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512296.
Pełny tekst źródłaLuo, Yunfei. "Chemoenzymatic synthesis of C2 symmetric chiral dienes for asymmetric catalysis". Thesis, University of Liverpool, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539483.
Pełny tekst źródłaBöhnisch, Torben. "C2-Symmetric Pyrazole-Bridged Ligands and Their Application in Asymmetric Transition-Metal Catalysis". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://hdl.handle.net/11858/00-1735-0000-0028-876A-6.
Pełny tekst źródłaLake, Fredrik. "C2- and C3-symmetric ligands via ring-opening of aziridines". Doctoral thesis, KTH, Chemistry, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3424.
Pełny tekst źródłaThis thesis deals with the design and synthesis of chiralenantiopure nitrogencontaining ligands and the use of theseligands in asymmetric catalysis. A modular synthetic approachto enantiopure nitrogen-containing ligands was developed. Thesynthetic method is based on the ring-opening of activatedchiral aziridines by nitrogen nucleophiles. The aziridines areconveniently prepared from amino alcohols. The structure oftheaziridine and of the nucleophile can be extensively varied andlibraries of ligands are easily prepared. The use of primaryamines affords C2-symmetric bis(sulfonamides), whereas the use ofammonia affords C3-symmetric tris(sulfonamides) that can beelaborated into the corresponding tetra-amines.
The C2- and C3-symmetric ligands were used in the asymmetrictitaniummediated addition of diethylzinc to benzaldehyderesulting in modest enantioselection, 76% ee. A thoroughinvestigation of the reaction conditions revealed that theamount of Ti(OiPr)4has a decisive effect on the reaction rate and thestereochemical outcome of the reaction. The reaction timedecreased from about 90 hours to 15 minutes and theenantioselectivity changed from 26% of the (R)- enantiomer to72% of the (S)-enantiomer when the Ti(OiPr)4:benzaldehyde ratio was increased from 0.125:1 to1.48:1. Moreover, the titanium-mediated addition of diethylzincto benzaldehyde was studied in the presence of chiraladditives. The bis(sulfonamides) were also used in thecyclopropanation of cinnamyl alcohol. However, only lowenantioselection was observed, 27% ee.
The C3-symmetric tetra-amines were reacted to formazaphosphatranes. These weak acids were only partiallydeprotonated by the strong base KOtBu to form the correspondingproazaphosphatranes. The unexpectedly strong basicity of theproazaphosphatranes was believed to be due to steric effects assuggested by DFT calculations. The tetra-amines and thesulfonamides were used for the preparation of metal complexesof Lewis acidic metals such as titanium(IV) andzirconium(IV).
Keywords:asymmetric catalysis, aziridine, benzaldehyde,diethylzinc, enantioselective, ligand, proazaphosphatrane,ring-opening, sulfonamide, symmetry, titanium, zirconium
Böhnisch, Torben [Verfasser], Franc [Akademischer Betreuer] [Gutachter] Meyer, Guido [Gutachter] Clever, Thomas [Gutachter] Waitz, Ulf [Gutachter] Diederichsen, Dietmar [Gutachter] Stalke i Konrad [Gutachter] Koszinowski. "C2-Symmetric Pyrazole-Bridged Ligands and Their Application in Asymmetric Transition-Metal Catalysis / Torben Böhnisch. Betreuer: Franc Meyer. Gutachter: Franc Meyer ; Guido Clever ; Thomas Waitz ; Ulf Diederichsen ; Dietmar Stalke ; Konrad Koszinowski". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://d-nb.info/1103233963/34.
Pełny tekst źródłaGillespie, Jason A. "Design and synthesis of wide bite angle phosphacyclic ligands". Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3100.
Pełny tekst źródłaFjellander, Ester. "Self-adaptable catalysts : Importance of flexibility and applications in asymmetric catalysis". Doctoral thesis, KTH, Organisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12852.
Pełny tekst źródłaQC20100630
Hunt, Jamie. "C1- and C2- Symmetrical Metal-Salen Complexes and their Application to Asymmetric Catalysis". Thesis, University of Newcastle Upon Tyne, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515075.
Pełny tekst źródłaStranne, Robert. "Investigation of Symmetry and Electronic Effects in Asymmetric Palladium-Catalysed Allylic Substitutions". Doctoral thesis, KTH, Chemistry, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3283.
Pełny tekst źródłaZalubovskis, Raivis. "Flexibility – a tool for chirality control in asymmetric catalysis". Doctoral thesis, KTH, Kemi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4166.
Pełny tekst źródłaQC 20100929
Książki na temat "Symmetric/Asymmetric Catalysis"
Harald, Gröger, red. Asymmetric organocatalysis: From biomimetic concepts to applications in asymmetric synthesis. Weinheim: Wiley-VCH, 2005.
Znajdź pełny tekst źródłaBerkessel, Albrecht, Harald Gröger i David MacMillan. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH Verlag GmbH, 2005.
Znajdź pełny tekst źródłaBerkessel, Albrecht, Harald Gröger i David MacMillan. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley & Sons, Incorporated, John, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Symmetric/Asymmetric Catalysis"
Gamez, P., F. Fache, M. Lemaire i P. Mangeney. "Heterogeneous Asymmetric Catalysis with C2 Symmetric Amine-Modified Rhodium/Silica". W Chiral Reactions in Heterogeneous Catalysis, 147–49. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1909-6_16.
Pełny tekst źródłaZhang, Wanbin, i Delong Liu. "Symmetrical 1,1′-Bidentate Ferrocenyl Ligands". W Chiral Ferrocenes in Asymmetric Catalysis, 175–214. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527628841.ch7.
Pełny tekst źródłaKeyes, Michael C., i William B. Tolman. "Chiral C3-symmetric ligands and their transition metal complexes". W Asymmetric Catalysis, 189–219. Elsevier, 1998. http://dx.doi.org/10.1016/s1874-5156(97)80009-1.
Pełny tekst źródłaNakata, Kumi, Madoka Kawamura i Ryuichi Shirai. "Catalytic Asymmetric Epoxidation of Olefins by C2-Symmetric Chiral Dioxiranes". W 19th International Congress on Heterocyclic Chemistry, 259. Elsevier, 2003. http://dx.doi.org/10.1016/b978-0-08-044304-1.50251-3.
Pełny tekst źródłaBandar, Jeffrey S. "Reductions". W Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0010.
Pełny tekst źródła