Gotowa bibliografia na temat „Syllable-based ASR”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Syllable-based ASR”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Syllable-based ASR"
Galatang, Danny Henry, i Suyanto Suyanto. "Syllable-Based Indonesian Automatic Speech Recognition". International Journal on Electrical Engineering and Informatics 12, nr 4 (31.12.2020): 720–28. http://dx.doi.org/10.15676/ijeei.2020.12.4.2.
Pełny tekst źródłaValizada, Alakbar. "DEVELOPMENT OF A REAL-TIME SPEECH RECOGNITION SYSTEM FOR THE AZERBAIJANI LANGUAGE". Problems of Information Society 14, nr 2 (5.07.2023): 55–60. http://dx.doi.org/10.25045/jpis.v14.i2.07.
Pełny tekst źródłaMahesha, P., i D. S. Vinod. "Gaussian Mixture Model Based Classification of Stuttering Dysfluencies". Journal of Intelligent Systems 25, nr 3 (1.07.2016): 387–99. http://dx.doi.org/10.1515/jisys-2014-0140.
Pełny tekst źródłaPerrine, Brittany L., Ronald C. Scherer i Jason A. Whitfield. "Signal Interpretation Considerations When Estimating Subglottal Pressure From Oral Air Pressure". Journal of Speech, Language, and Hearing Research 62, nr 5 (21.05.2019): 1326–37. http://dx.doi.org/10.1044/2018_jslhr-s-17-0432.
Pełny tekst źródłaRui, Xian Yi, Yi Biao Yu i Ying Jiang. "Connected Mandarin Digit Speech Recognition Using Two-Layer Acoustic Universal Structure". Advanced Materials Research 846-847 (listopad 2013): 1380–83. http://dx.doi.org/10.4028/www.scientific.net/amr.846-847.1380.
Pełny tekst źródłaRong, Panying. "Neuromotor Control of Speech and Speechlike Tasks: Implications From Articulatory Gestures". Perspectives of the ASHA Special Interest Groups 5, nr 5 (23.10.2020): 1324–38. http://dx.doi.org/10.1044/2020_persp-20-00070.
Pełny tekst źródłaVan der Burg, Erik, i Patrick T. Goodbourn. "Rapid, generalized adaptation to asynchronous audiovisual speech". Proceedings of the Royal Society B: Biological Sciences 282, nr 1804 (7.04.2015): 20143083. http://dx.doi.org/10.1098/rspb.2014.3083.
Pełny tekst źródłaTruong Tien, Toan. "ASR - VLSP 2021: An Efficient Transformer-based Approach for Vietnamese ASR Task". VNU Journal of Science: Computer Science and Communication Engineering 38, nr 1 (30.06.2022). http://dx.doi.org/10.25073/2588-1086/vnucsce.325.
Pełny tekst źródłaThanh, Pham Viet, Le Duc Cuong, Dao Dang Huy, Luu Duc Thanh, Nguyen Duc Tan, Dang Trung Duc Anh i Nguyen Thi Thu Trang. "ASR - VLSP 2021: Semi-supervised Ensemble Model for Vietnamese Automatic Speech Recognition". VNU Journal of Science: Computer Science and Communication Engineering 38, nr 1 (30.06.2022). http://dx.doi.org/10.25073/2588-1086/vnucsce.332.
Pełny tekst źródłaHaley, Katarina L., Adam Jacks, Soomin Kim, Marcia Rodriguez i Lorelei P. Johnson. "Normative Values for Word Syllable Duration With Interpretation in a Large Sample of Stroke Survivors With Aphasia". American Journal of Speech-Language Pathology, 18.08.2023, 1–13. http://dx.doi.org/10.1044/2023_ajslp-22-00300.
Pełny tekst źródłaRozprawy doktorskie na temat "Syllable-based ASR"
DavidSarwono i 林立成. "A Syllable Cluster Based Weighted Kernel Feature Matrix for ASR Substitution Error Correction". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/28550786350424171660.
Pełny tekst źródła國立成功大學
資訊工程學系碩博士班
100
Abstract A Syllable Cluster Based Weighted Kernel Feature Matrix for ASR Substitution Error Correction David Sarwono * Chung-Hsien Wu** Institute of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. In recent years Automatic Speech Recognition (ASR) technology has become one of the most growing technologies in engineering science and research. However, the performance of ASR technology is still restricted in adverse environments. Errors in Automatic Speech Recognition outputs lead to low performance for speech applications, therefore correction techniques for these errors will be beneficial to applications relied on ASR outputs. In this study, A Syllable Cluster Based Weighted Kernel Feature Matrix based on Context Dependent Syllable Cluster (CDSC) is proposed for the generation of correction candidates. For candidate selection in the second stage, the n-gram language model is used to determine the final corrected sentence output, thus to improve speech recognition output results recognition rate. Experiments show that the proposed method improved from 48.50% to 45.31% and 15.37% to 10.31% in terms of Word Error Rate score and Syllable Error Rate as compared to the speech recognition approach. Keyword-Context Dependent Syllable, Automatic Speech Recognizer, Error Correction, Natural Language Processing * The Author ** The Advisor
Anoop, C. S. "Automatic speech recognition for low-resource Indian languages". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6195.
Pełny tekst źródłaKsiążki na temat "Syllable-based ASR"
Stein, Gabriele. Peter Levins’ description of word-formation (1570). Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198807377.003.0008.
Pełny tekst źródłaUffmann, Christian. World Englishes and Phonological Theory. Redaktorzy Markku Filppula, Juhani Klemola i Devyani Sharma. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199777716.013.32.
Pełny tekst źródłaCzęści książek na temat "Syllable-based ASR"
Kim, Byeongchang, Junhwi Choi i Gary Geunbae Lee. "ASR Error Management Using RNN Based Syllable Prediction for Spoken Dialog Applications". W Advances in Parallel and Distributed Computing and Ubiquitous Services, 99–106. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0068-3_12.
Pełny tekst źródłaSchneider, Anne H., Johannes Hellrich i Saturnino Luz. "Word, Syllable and Phoneme Based Metrics Do Not Correlate with Human Performance in ASR-Mediated Tasks". W Advances in Natural Language Processing, 392–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10888-9_39.
Pełny tekst źródłaHeslop, Kate. "A Poetry Machine". W Viking Mediologies, 160–84. Fordham University Press, 2022. http://dx.doi.org/10.5422/fordham/9780823298242.003.0007.
Pełny tekst źródłaStreszczenia konferencji na temat "Syllable-based ASR"
Ryu, Hyuksu, Minsu Na i Minhwa Chung. "Pronunciation modeling of loanwords for Korean ASR using phonological knowledge and syllable-based segmentation". W 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2015. http://dx.doi.org/10.1109/apsipa.2015.7415308.
Pełny tekst źródłaLiu, Chao-Hong, Chung-Hsien Wu, David Sarwono i Jhing-Fa Wang. "Candidate generation for ASR output error correction using a context-dependent syllable cluster-based confusion matrix". W Interspeech 2011. ISCA: ISCA, 2011. http://dx.doi.org/10.21437/interspeech.2011-488.
Pełny tekst źródłaHromada, Daniel, i Hyungjoong Kim. "Digital Primer Implementation of Human-Machine Peer Learning for Reading Acquisition: Introducing Curriculum 2". W 10th International Conference on Human Interaction and Emerging Technologies (IHIET 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1004027.
Pełny tekst źródłaQu, Zhongdi, Parisa Haghani, Eugene Weinstein i Pedro Moreno. "Syllable-based acoustic modeling with CTC-SMBR-LSTM". W 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2017. http://dx.doi.org/10.1109/asru.2017.8268932.
Pełny tekst źródłaMoungsri, Decha, Tomoki Koriyama i Takao Kobayashi. "Enhanced F0 generation for GPR-based speech synthesis considering syllable-based prosodic features". W 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017. http://dx.doi.org/10.1109/apsipa.2017.8282285.
Pełny tekst źródłaSakamoto, Nagisa, Kazumasa Yamamoto i Seiichi Nakagawa. "Combination of syllable based N-gram search and word search for spoken term detection through spoken queries and IV/OOV classification". W 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, 2015. http://dx.doi.org/10.1109/asru.2015.7404795.
Pełny tekst źródła