Gotowa bibliografia na temat „Switching Transition”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Switching Transition”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Switching Transition"
Malinenko, V. P., L. A. Aleshina, A. L. Pergament i G. V. Germak. "Switching Effects and Metal−Insulator Transition in Manganese Oxide". Journal on Selected Topics in Nano Electronics and Computing 1, nr 1 (grudzień 2013): 44–50. http://dx.doi.org/10.15393/j8.art.2013.3005.
Pełny tekst źródłaYan, Zhongna, Dou Zhang, Xuefan Zhou, He Qi, Hang Luo, Kechao Zhou, Isaac Abrahams i Haixue Yan. "Silver niobate based lead-free ceramics with high energy storage density". Journal of Materials Chemistry A 7, nr 17 (2019): 10702–11. http://dx.doi.org/10.1039/c9ta00995g.
Pełny tekst źródłaHiggins, Matthew L., i Frank Ofori-Acheampong. "A Markov Regime-Switching Model with Time-Varying Transition Probabilities for Identifying Asset Price Bubbles". International Journal of Economics and Finance 10, nr 4 (3.03.2018): 1. http://dx.doi.org/10.5539/ijef.v10n4p1.
Pełny tekst źródłaHan, Xiao, Ying Hui Gao, Yao Hong Sun i Ping Yan. "An Electronic Model of Capacitor Charging Power Supply Considering Transient Switching Interference". Advanced Materials Research 706-708 (czerwiec 2013): 1738–41. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.1738.
Pełny tekst źródłaShrestha, Ramesh, Yuxuan Luan, Sunmi Shin, Teng Zhang, Xiao Luo, James S. Lundh, Wei Gong i in. "High-contrast and reversible polymer thermal regulator by structural phase transition". Science Advances 5, nr 12 (grudzień 2019): eaax3777. http://dx.doi.org/10.1126/sciadv.aax3777.
Pełny tekst źródłaCastenschiold, R. "Closed-transition switching of essential loads". IEEE Transactions on Industry Applications 25, nr 3 (1989): 403–7. http://dx.doi.org/10.1109/28.31209.
Pełny tekst źródłaSawa, Akihito. "Resistive switching in transition metal oxides". Materials Today 11, nr 6 (czerwiec 2008): 28–36. http://dx.doi.org/10.1016/s1369-7021(08)70119-6.
Pełny tekst źródłaTIAN, Shijun, Xifan WANG, Xiuli WANG, Chengcheng SHAO i Rong YE. "Network transition security for transmission switching". Journal of Modern Power Systems and Clean Energy 7, nr 5 (wrzesień 2019): 1105–14. http://dx.doi.org/10.1007/s40565-019-0562-1.
Pełny tekst źródłaRamesh, K., Pumlianmunga, R. Venkatesh, N. Naresh i E. S. R. Gopal. "Phase Change Properties of Chalcogenide Glasses - Some Interesting Observations". Key Engineering Materials 702 (lipiec 2016): 37–42. http://dx.doi.org/10.4028/www.scientific.net/kem.702.37.
Pełny tekst źródłaDavis, Peter. "Adaptive Mode Selection Using On–Off Switching of Chaos". International Journal of Bifurcation and Chaos 08, nr 08 (sierpień 1998): 1671–74. http://dx.doi.org/10.1142/s0218127498001339.
Pełny tekst źródłaRozprawy doktorskie na temat "Switching Transition"
Alsindi, Wassim Zuhair. "Solvent based switching of photophysical properties of transition metal complexes". Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/13786/.
Pełny tekst źródłaTrapatseli, Maria. "Doping controlled resistive switching dynamics in transition metal oxide thin films". Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/423702/.
Pełny tekst źródłaNishi, Yusuke. "Nonpolar Resistive Switching Based on Quantized Conductance in Transition Metal Oxides". Kyoto University, 2019. http://hdl.handle.net/2433/242544.
Pełny tekst źródłaChoi, Jae-Young. "Analysis of Inductor-Coupled Zero-Voltage-Transition Converters". Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/28537.
Pełny tekst źródłaPh. D.
Bertoni, Roman. "Ultrafast photo-switching of spin crossover crystals : coherence and cooperativity". Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-01016162.
Pełny tekst źródłaGonzalez, Rosillo Juan Carlos. "Volume resistive switching in metallic perovskite oxides driven by the metal-Insulator transition". Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405305.
Pełny tekst źródłaStrongly correlated perovskite oxides are a class of materials with fascinating intrinsic physical functionalities due to the interplay of charge, spin, orbital ordering and lattice effects. The exotic phenomena arising from these competing degrees of freedom include superconductivity, ferromagnetism, ferroelectricity and metal-insulator transitions, among others. The use of these exotic phenomena in a new generation of devices with new and enhanced functionalities is continuing inspiring the research community. In this sense, Resistive-Random Access Memories (RRAM) are one of the most promising candidates to win the race towards the universal memory of the future, which could overcome the limitations of actual technologies (Flash and Dynamic-RAM), due to their excellent properties in terms of scalability, endurance, retention and switching speeds. They are based on the Resistive Switching effect (RS), where the application of an electric field produces a reversible, non-volatile change in the resistance between two or more resistive states. This phenomenon has been observed in a large variety of oxide materials, where the motion of oxygen is widely accepted to play a key role in their outstanding properties. However, the exact mechanism governing this effect is material-dependent and for some of them it is still far to be understood. This lack of understanding is actually one of the main bottlenecks preventing the widespread use of this technology. In this thesis, we present a novel Resistive Switching mechanism based on the Metal-Insulator Transition (MIT) in metallic perovskite oxides with strong electron electron interaction. We analyse the RS behaviour of three different families of metallic perovskites: La1-xSrxMnO3, YBa2Cu3O7-δ and RENiO3 and demonstrate that the MIT of these mixed electronic-ionic conductors can be tuned upon the application of an electric field, being able to transform the entire bulk volume. This volume RS is different in nature from interfacial or filamentary type and opens new possibilities of robust device design. Thorough nanoscale electrical characterization of the RS effect in these systems has been performed by means of Conductive-Atomic Force Microscopy (C-AFM). Scanning Tunnelling Spectroscopy (STS) and temperature-dependent transport measurements were performed in the different resistive states to get insight into their electronic features. The nanoscale memristive behaviour of these systems is successfully reproduced at a micrometric scale with W-Au tips in probe station experiments. Using this approach, atmosphere dependent measurements were undertaken, where oxygen exchange with the ambience is strongly evidenced. In addition, we present a proof-of-principle result from a 3-Terminal configuration where the RS effect is applied at the gate of the device. In the particular case of superconducting YBa2Cu3O7-δ films, we have studied the influence of high resistance areas, which are embedded in the material, on the superconducting transport properties enabling vortex pinning modification and paving the way towards novel reconfigurable vortex pinning sites. We interpret the RS results of these strongly correlated systems in terms of a Mott volume transition, that we believe to be of general validity for metallic perovskite complex oxides. We have verified that strongly correlated metallic perovskite oxides are a unique class of materials very promising for RS applications due to its intrinsic MIT properties that boosts a robust volumetric resistive switching effect. This thesis settles down the framework to understand the RS effect in these strongly correlated pervoskites, which could eventually lead to a new generation of devices exploiting the intrinsic MIT of these systems.
Chukmaitova, Dariga. "Sector-Switching in Transition Economies: A Case Study of Kazakhstan's Health Care Sector". Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/cgu_etd/20.
Pełny tekst źródłaOkumu, Emmanuel Latim. "Non-linear prediction in the presence of macroeconomic regimes". Thesis, Uppsala universitet, Statistiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297222.
Pełny tekst źródłaWang, Ge. "Phase switching behaviour in lead-free Na0.5Bi0.5TiO3-based ceramics". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/phase-switching-behaviour-in-leadfree-na05bi05tio3based-ceramics(267b315d-3757-4865-9f88-5eeed76d61c4).html.
Pełny tekst źródłaLandrock, Ruth Christine [Verfasser]. "Spatially resolved analysis of resistive switching in transition metal oxide thin films / Ruth Christine Landrock". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018206884/34.
Pełny tekst źródłaKsiążki na temat "Switching Transition"
Diebold, Francis X. Regime switching with time-varying transition probabilities. Philadelphia: Federal Reserve Bank of Philadelphia, Economic Research Division, 1993.
Znajdź pełny tekst źródłaThe Chinese road to high technology: A study of telecommunications switching technology in the economic transition. New York: St. Martin's Press, 1999.
Znajdź pełny tekst źródłaOffice, General Accounting. Telecommunications: Additional federal efforts could help advance digital television transition : report to the ranking minority member, Subcommittee on Telecommunications and the Internet, Committee on Energy and Commerce, House of Representatives. [Washington, D.C.]: General Accounting Office (441 G St. NW, Room LM, Washington, 20548), 2002.
Znajdź pełny tekst źródłaSwitching Sides: Making the Transition from Obedience to Agility. Taylor Trade Publishing, 1999.
Znajdź pełny tekst źródłaLane, Jeffrey. Code Switching. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199381265.003.0003.
Pełny tekst źródłaShen, Xiaobai. Chinese Road to High Technology: Telecommunications Switching Technology in the Economic Transition. Palgrave Macmillan, 2014.
Znajdź pełny tekst źródłaShen, Xiaobai. Chinese Road to High Technology: Telecommunications Switching Technology in the Economic Transition. Palgrave Macmillan Limited, 1999.
Znajdź pełny tekst źródłaShen, X. Chinese Road to High Technology: Telecommunications Switching Technology in the Economic Transition. Palgrave Macmillan, 1999.
Znajdź pełny tekst źródłaThe Art Of Switching Up: A Simple guide to a profitable transition from gown to town. Nigeria: Exude Communications, 2019.
Znajdź pełny tekst źródłaBao, Yun, Carl Chiarella i Boda Kang. Particle Filters for Markov-Switching Stochastic Volatility Models. Redaktorzy Shu-Heng Chen, Mak Kaboudan i Ye-Rong Du. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199844371.013.9.
Pełny tekst źródłaCzęści książek na temat "Switching Transition"
Wong, Franklin J., i Shriram Ramanathan. "Electrical Transport in Transition Metal Oxides". W Resistive Switching, 165–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527680870.ch6.
Pełny tekst źródłaXiao, Huafeng, Ruibin Wang, Chenhui Niu, Yun Liu i Kairong Qian. "Zero-Current-Transition TLIs with Switching-Loss-Free". W CPSS Power Electronics Series, 25–52. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3038-6_3.
Pełny tekst źródłaIwai, S., Y. Okimoto, M. Ono, H. Matsuzaki, A. Maeda, H. Kishida, H. Okamoto i Y. Tokura. "Ultrafast insulator-to-metal switching by photoinduced Mott transition". W Springer Series in Chemical Physics, 340–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27213-5_105.
Pełny tekst źródłaBecker, M. F., A. B. Buckman, R. M. Walser, T. Lépine, P. Georges i A. Brun. "Femtosecond Switching of the Solid-State Phase Transition in VO2". W Springer Series in Chemical Physics, 320–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85176-6_115.
Pełny tekst źródłaShakouri, A., I. Gravé, Y. Xu i A. Yariv. "Multi λ Controlled Operation of Quantum Well IR Detectors Using Electric Field Switching and Rearrangement". W Quantum Well Intersubband Transition Physics and Devices, 135–50. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_11.
Pełny tekst źródłaLinne, Thomas. "A Markov Switching Model of Stock Returns: An Application to the Emerging Markets in Central and Eastern Europe". W East European Transition and EU Enlargement, 371–79. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-642-57497-9_23.
Pełny tekst źródłaSneps-Sneppe, Manfred, Dmitry Namiot i Maris Alberts. "Channel Switching Protocols Hinder the Transition to IP World: The Pentagon Story". W Lecture Notes in Computer Science, 185–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30859-9_16.
Pełny tekst źródłaBognár, Tomas, Jozef Komorník i Magda Komorníková. "Application of Regime-Switching Models of Time Series with Cubic Spline Transition Function". W Soft Methodology and Random Information Systems, 581–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44465-7_72.
Pełny tekst źródłaGonzalez-Rosillo, Juan Carlos, Rafael Ortega-Hernandez, Júlia Jareño-Cerulla, Enrique Miranda, Jordi Suñe, Xavier Granados, Xavier Obradors, Anna Palau i Teresa Puig. "Volume Resistive Switching in Metallic Perovskite Oxides Driven by the Metal-Insulator Transition". W Electronic Materials: Science & Technology, 289–310. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42424-4_12.
Pełny tekst źródłaYajima, Naonari, Toshi H. Arimura i Taisuke Sadayuki. "Energy Consumption in Transition: Evidence from Facility-Level Data". W Economics, Law, and Institutions in Asia Pacific, 129–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6964-7_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Switching Transition"
Chan, Yuen-Chuen, i Kunio Tada. "Polarization Independent Optical Modulation with Tensile-Strained GaAs-InAIAs Quantum Wells grown on GaAs Substrate". W Photonics in Switching. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/ps.1993.pmb2.1.
Pełny tekst źródłaRannow, Michael B., i Perry Y. Li. "Soft Switching Approach to Reducing Transition Losses in an On/Off Hydraulic Valve". W ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2617.
Pełny tekst źródłaTsai, Chin-Chun, Yi-Chi Lee i Hsiang-Chen Chui. "All-optical switching using cesium two-photon transition". W 2013 6th International Conference on Advanced Infocomm Technology (ICAIT). IEEE, 2013. http://dx.doi.org/10.1109/icait.2013.6621567.
Pełny tekst źródłaMagyari-Köpe, B., i Y. Nishi. "Resistive Switching in Transition Metal Oxide ReRAM Devices". W 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.b-7-1.
Pełny tekst źródłaGorzelic, Patrick, Prasad Shingne, Jason Martz, Anna Stefanopoulou, Jeff Sterniak i Li Jiang. "A Low-Order HCCI Model Extended to Capture SI-HCCI Mode Transition Data With Two-Stage Cam Switching". W ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6275.
Pełny tekst źródłaWang, Feiling, Gene H. Haertling i Kewen K. Li. "Photo-Activated Phase Transition In Antiferroelectric Thin Films For Optical Switching And Storage*". W Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/ods.1994.tud5.
Pełny tekst źródłaWoodward, T. K., B. Tell, W. H. Knox, M. T. Asom i J. B. Stark. "Low-Responsivity GaAs/AlAs Asymmetric Fabry-Perot Modulators". W Photonics in Switching. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/ps.1993.sps99.
Pełny tekst źródłaLee, Jeremy, i Mohammad Tehranipoor. "LS-TDF: Low-Switching Transition Delay Fault Pattern Generation". W 26th IEEE VLSI Test Symposium (vts 2008). IEEE, 2008. http://dx.doi.org/10.1109/vts.2008.48.
Pełny tekst źródłaRiazmontazer, Hossein, Arash Rahnamaee, Alireza Mojab, Siamak Mehrnami, Sudip K. Mazumder i Milos Zefran. "Closed-loop control of switching transition of SiC MOSFETs". W 2015 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2015. http://dx.doi.org/10.1109/apec.2015.7104438.
Pełny tekst źródłaManiv, Eran. "Electrical switching in a magnetically intercalated transition metal dichalcogenide". W Spintronics XIII, redaktorzy Henri-Jean M. Drouhin, Jean-Eric Wegrowe i Manijeh Razeghi. SPIE, 2020. http://dx.doi.org/10.1117/12.2567451.
Pełny tekst źródłaRaporty organizacyjne na temat "Switching Transition"
Misas A., Martha, i María Teresa Ramírez-Giraldo. Colombian economic growth under Markov switching regimes with endogenous transition probabilities. Bogotá, Colombia: Banco de la República, grudzień 2006. http://dx.doi.org/10.32468/be.425.
Pełny tekst źródłaYılmaz, Fatih. Understanding the Dynamics of the Renewable Energy Transition: The Determinants and Future Projections Under Different Scenarios. King Abdullah Petroleum Studies and Research Center, maj 2022. http://dx.doi.org/10.30573/ks--2021-dp25.
Pełny tekst źródłaMilovanovic, N., D. W. Blundell i J. W. G. Turner. Transition Quality Between Spark Ignition and Homogeneous Charge Compression Ignition Modes Using Two Different VVT Strategies: Cam Profile Switching and Phasing Strategy Versus Fully Variable Valve Train Strategy. Warrendale, PA: SAE International, maj 2005. http://dx.doi.org/10.4271/2005-08-0159.
Pełny tekst źródła