Gotowa bibliografia na temat „SVM AND GABOR FILTER”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SVM AND GABOR FILTER”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SVM AND GABOR FILTER"
AMIN, M. ASHRAFUL, i HONG YAN. "AN EMPIRICAL STUDY ON THE CHARACTERISTICS OF GABOR REPRESENTATIONS FOR FACE RECOGNITION". International Journal of Pattern Recognition and Artificial Intelligence 23, nr 03 (maj 2009): 401–31. http://dx.doi.org/10.1142/s0218001409007181.
Pełny tekst źródłaHabibullah, Muhamad, Hisyam Fahmi i Erna Herawati. "Penerapan Metode Segmentasi Gabor Filter Dan Algoritma Support Vector Machine Untuk Pendeteksian Penyakit Daun Tomat". Jurnal Riset Mahasiswa Matematika 2, nr 6 (1.09.2023): 221–32. http://dx.doi.org/10.18860/jrmm.v2i6.22023.
Pełny tekst źródłaJain, Manali, i Amit Sinha. "Classification of Satellite Images through Gabor Filter using SVM". International Journal of Computer Applications 116, nr 7 (22.04.2015): 18–21. http://dx.doi.org/10.5120/20348-2534.
Pełny tekst źródłaDing, Shu Min, Chun Lei Li i Zhou Feng Liu. "Fabric Defect Detection Scheme Based on Gabor Filter and PCA". Advanced Materials Research 482-484 (luty 2012): 159–63. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.159.
Pełny tekst źródłaSUMAN, S. BHUJBAL, i R. PATIL SHUBHANGI. "IMAGE SEARCH BY COMPARING GABOR FILTER WITH SVM AND SIFT". i-manager's Journal on Information Technology 7, nr 3 (2018): 10. http://dx.doi.org/10.26634/jit.7.3.14403.
Pełny tekst źródłaYan, Jianqiang, Jie Li i Xinbo Gao. "Chinese text location under complex background using Gabor filter and SVM". Neurocomputing 74, nr 17 (październik 2011): 2998–3008. http://dx.doi.org/10.1016/j.neucom.2011.04.031.
Pełny tekst źródłaLahmiri, Salim, i Mounir Boukadoum. "Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images". Journal of Medical Engineering 2013 (15.04.2013): 1–13. http://dx.doi.org/10.1155/2013/104684.
Pełny tekst źródłaGao, Xiaojing, Heru Xue, Xin Pan, Xinhua Jiang, Yanqing Zhou i Xiaoling Luo. "Somatic Cells Recognition by Application of Gabor Feature-Based (2D)2PCA". International Journal of Pattern Recognition and Artificial Intelligence 31, nr 12 (17.09.2017): 1757009. http://dx.doi.org/10.1142/s0218001417570099.
Pełny tekst źródłaIm, Sang mi, Hye yeon Cho i TaeYong Kim. "Age Estimation based on Facial Wrinkles by using the Gabor filter and SVM". TECHART: Journal of Arts and Imaging Science 3, nr 4 (30.11.2016): 24. http://dx.doi.org/10.15323/techart.2016.11.3.4.24.
Pełny tekst źródłaMuchtar, Mutmainnah, i Laili Cahyani. "Klasifikasi Citra Daun dengan Metode Gabor Co-Occurence". Jurnal ULTIMA Computing 7, nr 2 (1.08.2016): 39–47. http://dx.doi.org/10.31937/sk.v7i2.231.
Pełny tekst źródłaRozprawy doktorskie na temat "SVM AND GABOR FILTER"
Shrestha, Ujjwal. "Automatic Liver and Tumor Segmentation from CT Scan Images using Gabor Feature and Machine Learning Algorithms". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1522411364001198.
Pełny tekst źródłaGasslander, Maja. "Segmentation of Clouds in Satellite Images". Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128802.
Pełny tekst źródłaJamborová, Soňa. "Segmentace obrazu pomocí neuronové sítě". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-236925.
Pełny tekst źródłaönder, gül, i aydın kayacık. "Multiview Face Detection Using Gabor Filter and Support Vector Machines". Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-2152.
Pełny tekst źródłaFace detection is a preprocessing step for face recognition algorithms. It is the localization of face/faces in an image or image sequence. Once the face(s) are localized, other computer vision algorithms such as face recognition, image compression, camera auto focusing etc are
applied. Because of the multiple usage areas, there are many research efforts in face processing. Face detection is a challenging computer vision problem because of lighting conditions, a high degree of variability in size, shape, background, color, etc. To build fully
automated systems, robust and efficient face detection algorithms are required.
Numerous techniques have been developed to detect faces in a single image; in this project we have used a classification-based face detection method using Gabor filter features. We have designed five frequencies corresponding to eight orientations channels for extracting facial features from local images. The feature vector based on Gabor filter is used as the input of the face/non-face classifier, which is a Support Vector Machine (SVM) on a reduced feature
subspace extracted by using principal component analysis (PCA).
Experimental results show promising performance especially on single face images where 78% accuracy is achieved with 0 false acceptances.
Almeida, Osvaldo Cesar Pinheiro de. "Técnicas de processamento de imagens para localização e reconhecimento de faces". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22012007-160023/.
Pełny tekst źródłaBiometry is the science of measuring and analyzing biomedical data. Many works in this field have explored the characteristics of human beings, such as digital fingerprints, iris, and face to develop biometric systems, employed in various aplications (security monitoring, ubiquitous computation, robotic). Face identification and recognition are very apealing biometric techniques, as it it intuitive and less invasive than others. Many works in this field are only concerned with locating the face of an individual (for counting purposes), while others try to identify people from faces. The objective of this work is to develop a biometric system that could identify and recognize faces. The work can be divided into two major stages: (1) Locate and track in a sequence of images (frames), as well as separating the tracked region from the image; (2) Recognize a face as belonging to a certain individual. In the former, faces are captured from frames of a video camera by a motion analysis system (based on substraction of frames), capable of finding, tracking and croping faces from images of individuals. The later, consists of elements for data reductions (Principal Component Analysis - PCA), feature extraction (Gabor wavelets) and face classification (Euclidean distance and Support Vector Machine - SVM). Two faces databases have been used: FERET and a \"home-made\" one. Tests have been undertaken so as to assess the system\'s recognition capabilities. The experiments have shown that the technique exhibited a satisfactory performance, with success rates of 91.97% and 100% for the FERET and the \"home-made\" databases, respectively.
Kiernan, Mary. "Implementation and design of the discrete Gabor filter for sonar texture classification". Thesis, Heriot-Watt University, 1995. http://hdl.handle.net/10399/766.
Pełny tekst źródłaKonuk, Baris. "Palmprint Recognition Based On 2-d Gabor Filters". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608138/index.pdf.
Pełny tekst źródłain this way an online palmprint recognition system has been developed. Then a small palmprint database is formed via this system in Middle East Technical University. Results on this new database have also shown the success of the developed algorithm.
Davis, Craig Alton Denney Thomas Stewart. "Applications of multi-channel filter banks to textured image segmentation". Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/DAVIS_CRAIG_12.pdf.
Pełny tekst źródłaRavikumar, Rahul. "Multi-scale texture analysis of remote sensing images using gabor filter banks and wavelet transforms". Thesis, [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3175.
Pełny tekst źródłaMar, Nang Seng Siri. "Vision-based classification of solder joint defects". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/37273/1/Nang_Mar_Thesis.pdf.
Pełny tekst źródłaCzęści książek na temat "SVM AND GABOR FILTER"
Sabri, Mahdi, i Paul Fieguth. "A New Gabor Filter Based Kernel for Texture Classification with SVM". W Lecture Notes in Computer Science, 314–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30126-4_39.
Pełny tekst źródłaKavya Ashwini, A. K., R. Madhumitha, Mary Ann Sandra, S. Supriya, Ullal Akshatha Nayak i K. Ranjitha. "Identical Twin Face Recognition Using Gabor Filter, SVM Classifier and SURF Algorithm". W Emerging Research in Computing, Information, Communication and Applications, 11–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1342-5_2.
Pełny tekst źródłaVijaya Madhavi, Mantragar, i T. Christy Bobby. "Gabor Filter Based Classification of Mammography Images Using LS-SVM and Random Forest Classifier". W Communications in Computer and Information Science, 69–83. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9184-2_6.
Pełny tekst źródłaBölcskei, Helmut, i Franz Hlawatsch. "Oversampled modulated filter banks". W Gabor Analysis and Algorithms, 295–322. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2016-9_10.
Pełny tekst źródłaGhandehari, Azadeh, i Reza Safabakhsh. "Palmprint Verification Using Circular Gabor Filter". W Advances in Biometrics, 675–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01793-3_69.
Pełny tekst źródłaZhu, En, Jianping Yin i Guomin Zhang. "Fingerprint Enhancement Using Circular Gabor Filter". W Lecture Notes in Computer Science, 750–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30126-4_91.
Pełny tekst źródłaNazarkevych, Mariya, Mykola Logoyda, Oksana Troyan, Yaroslav Vozniy i Zoreslava Shpak. "The Ateb-Gabor Filter for Fingerprinting". W Advances in Intelligent Systems and Computing IV, 247–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33695-0_18.
Pełny tekst źródłaNikam, Shankar Bhausaheb, i Suneeta Agarwal. "Gabor Filter-Based Fingerprint Anti-spoofing". W Advanced Concepts for Intelligent Vision Systems, 1103–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88458-3_100.
Pełny tekst źródłaZhang, Hong, Zhi Liu, Qijun Zhao, Congcong Zhang i Dandan Fan. "Finger Vein Recognition Based on Gabor Filter". W Lecture Notes in Computer Science, 827–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42057-3_104.
Pełny tekst źródłaLiu, Shuai, Yuanning Liu, Xiaodong Zhu, Guang Huo, Jingwei Cui i Yihao Chen. "Iris Recognition Based on Adaptive Gabor Filter". W Biometric Recognition, 383–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69923-3_41.
Pełny tekst źródłaStreszczenia konferencji na temat "SVM AND GABOR FILTER"
Laxmi, Vijaya, i Parvataneni Sudhakara Rao. "Eye detection using Gabor Filter and SVM". W 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA 2012). IEEE, 2012. http://dx.doi.org/10.1109/isda.2012.6416654.
Pełny tekst źródłaFeng, Jun, i Yanhai Zhu. "Text independent writer identification based on Gabor filter and SVM classifier". W Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic technology, and Artificial Intelligence, redaktorzy Jiancheng Fang i Zhongyu Wang. SPIE, 2006. http://dx.doi.org/10.1117/12.716914.
Pełny tekst źródłaKumar, Atul, Yen-Yu Wang, Kai-Che Liu, I-Chen Tsai, Ching-Chun Huang i Nguyen Hung. "Distinguishing normal and pulmonary edema chest x-ray using Gabor filter and SVM". W 2014 International Symposium on Bioelectronics and Bioinformatics (ISBB). IEEE, 2014. http://dx.doi.org/10.1109/isbb.2014.6820918.
Pełny tekst źródłaFan, Yanfeng, i Hongmei Zhang. "Application of Gabor Filter and Multi-class SVM in Baking Bread Quality Classification". W 2006 International Conference on Mechatronics and Automation. IEEE, 2006. http://dx.doi.org/10.1109/icma.2006.257396.
Pełny tekst źródłaBourgeat, Pierrick T., Fabrice Meriaudeau, Patrick Gorria i Kenneth W. Tobin. "Gabor filters and SVM classifier for pattern wafer segmentation". W Optics East, redaktorzy Frederic Truchetet i Olivier Laligant. SPIE, 2004. http://dx.doi.org/10.1117/12.581242.
Pełny tekst źródłaBin Makhashen, G. M., H. A. Luqman i E. S. M. El-Alfy. "Using Gabor Filter Bank with Downsampling and SVM for Visual Sign Language Alphabet Recognition". W 2nd Smart Cities Symposium (SCS 2019). Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/cp.2019.0188.
Pełny tekst źródłaBojarczak, Piotr, i Waldemar Nowakowski. "Squat detection in railway rails using Gabor filter bank, SVM classifier and Genetic Algorithms". W 2017 15th International Conference on ITS Telecommunications (ITST). IEEE, 2017. http://dx.doi.org/10.1109/itst.2017.7972229.
Pełny tekst źródłaSingh, Shalini, Indrajit Das, Md Golam Mohiuddin, Amogh Banerjee i Sonali Gupta. "Design and Implementation of Gabor Filter and SVM based Authentication system using Machine Learning". W 2019 Devices for Integrated Circuit (DevIC). IEEE, 2019. http://dx.doi.org/10.1109/devic.2019.8783650.
Pełny tekst źródłaHuang, Deng-Yuan, Wu-Chih Hu i Sung-Hsiang Chang. "Vision-Based Hand Gesture Recognition Using PCA+Gabor Filters and SVM". W 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2009. http://dx.doi.org/10.1109/iih-msp.2009.96.
Pełny tekst źródłaMrinalini, S., N. S. Abinayalakshmi i C. Vinoth Kumar. "Wavelet feature based SVM and NAIVE BAYES classification of glaucomatous images using PCA and Gabor filter". W 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE, 2016. http://dx.doi.org/10.1109/isco.2016.7726898.
Pełny tekst źródłaRaporty organizacyjne na temat "SVM AND GABOR FILTER"
Li, Hua. Locally Connected Adaptive Gabor Filter for Real-Time Motion Compensation. Fort Belvoir, VA: Defense Technical Information Center, październik 1994. http://dx.doi.org/10.21236/ada285726.
Pełny tekst źródłaLi, Hua H. Locally Connected Adaptive Gabor Filter for Real-Time Motion Compensation. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1995. http://dx.doi.org/10.21236/ada300347.
Pełny tekst źródłaLi, Hua. Locally Connected Adaptive Gabor Filter for Real-Time Motion Compensation. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1992. http://dx.doi.org/10.21236/ada275175.
Pełny tekst źródła