Gotowa bibliografia na temat „Surfactant-Protein System”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Surfactant-Protein System”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Surfactant-Protein System"
Mason, Robert J., Kelly Greene i Dennis R. Voelker. "Surfactant protein A and surfactant protein D in health and disease". American Journal of Physiology-Lung Cellular and Molecular Physiology 275, nr 1 (1.07.1998): L1—L13. http://dx.doi.org/10.1152/ajplung.1998.275.1.l1.
Pełny tekst źródłaTADENUMA, Hirohiko, Ken YAMADA i Takamitsu TAMURA. "Analysis of Protein-Mixed Surfactant System Interactions ;". Journal of Japan Oil Chemists' Society 48, nr 3 (1999): 207–13. http://dx.doi.org/10.5650/jos1996.48.207.
Pełny tekst źródłaCañadas, Olga, Bárbara Olmeda, Alejandro Alonso i Jesús Pérez-Gil. "Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis". International Journal of Molecular Sciences 21, nr 10 (25.05.2020): 3708. http://dx.doi.org/10.3390/ijms21103708.
Pełny tekst źródłaTan, Ya-Xin, Shu-Jun Li, Hai-Tao Li, Xiao-Juan Yin, Bo Cheng, Jing-Li Guo, Na Li, Cheng-Zhong Zheng i Hong-Yu Chang. "Role of surfactant protein C in neonatal genetic disorders of the surfactant system". Medicine 100, nr 50 (17.12.2021): e28201. http://dx.doi.org/10.1097/md.0000000000028201.
Pełny tekst źródłaOvsyannikov, D. Yu, M. A. Zhestkova, V. A. Strelnikova, A. P. Averin, M. A. Atipaeva, O. Yu Brunova, G. V. Buyanova i in. "Genetic Dysfunctions of the Surfactant System in Children: Results of a Multicenter Study". Doctor.Ru 22, nr 3 (2023): 22–31. http://dx.doi.org/10.31550/1727-2378-2023-22-3-22-31.
Pełny tekst źródłaMoreira, Leonardo Marmo, i Juliana Pereira Lyon. "Interaction between surfactants and proteins". Pubvet 16, nr 5 (maj 2022): 1–8. http://dx.doi.org/10.31533/pubvet.v16n05a1115.1-8.
Pełny tekst źródłaKim, Hugh I., Hyungjun Kim, Young Shik Shin, Luther W. Beegle, Seung Soon Jang, Evan L. Neidholdt, William A. Goddard, James R. Heath, Isik Kanik i J. L. Beauchamp. "Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System". Journal of the American Chemical Society 132, nr 7 (24.02.2010): 2254–63. http://dx.doi.org/10.1021/ja908477w.
Pełny tekst źródłaMatalon, S., V. DeMarco, I. Y. Haddad, C. Myles, J. W. Skimming, S. Schurch, S. Cheng i S. Cassin. "Inhaled nitric oxide injures the pulmonary surfactant system of lambs in vivo". American Journal of Physiology-Lung Cellular and Molecular Physiology 270, nr 2 (1.02.1996): L273—L280. http://dx.doi.org/10.1152/ajplung.1996.270.2.l273.
Pełny tekst źródłaRodriguez-Capote, Karina, Kaushik Nag, Samuel Schürch i Fred Possmayer. "Surfactant protein interactions with neutral and acidic phospholipid films". American Journal of Physiology-Lung Cellular and Molecular Physiology 281, nr 1 (1.07.2001): L231—L242. http://dx.doi.org/10.1152/ajplung.2001.281.1.l231.
Pełny tekst źródłaWillems, Coen H. M. P., Luc J. I. Zimmermann, Renate M. R. Langen, Maria J. A. van den Bosch, Nico Kloosterboer, Boris W. Kramer i J. Freek van Iwaarden. "Surfactant Protein A Influences Reepithelialization in an Alveolocapillary Model System". Lung 190, nr 6 (13.10.2012): 661–69. http://dx.doi.org/10.1007/s00408-012-9424-6.
Pełny tekst źródłaRozprawy doktorskie na temat "Surfactant-Protein System"
Lim, Boon-Leong. "Cloning and expression of a C1q-binding protein and two of the collections (Collectin-43 and lung surfactant protein D)". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239328.
Pełny tekst źródłaAbozaid, Suhair Mohamed. "Studies on the interaction of surfactant protein SP-D with Inflenza A virus, Aspergillus fumigatus and dendritic cells". Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13595.
Pełny tekst źródłaKamalanathan, Ishara Dedunu. "Foam fractionation of surfactant-protein mixtures". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/foam-fractionation-of-surfactantprotein-mixtures(a6484b1a-d796-45ff-bc5c-420ef9130363).html.
Pełny tekst źródłaRickard, Deborah. "Multiphase, Multicomponent Systems: Divalent Ionic Surfactant Phases and Single-Particle Engineering of Protein and Polymer Glasses". Diss., 2011. http://hdl.handle.net/10161/3934.
Pełny tekst źródłaThis thesis presents an analysis of the material properties and phase behavior of divalent ionic surfactant salts, and protein and polymer glasses. There has been extensive interest in understanding the phase behavior of divalent ionic surfactants due to the many applications of ionic surfactants in which they come into contact with divalent ions, such as detergency, oil recovery, and surfactant separation processes. One goal of determining the phase boundaries was to explore the option of incorporating a hydrophobic molecule into the solid phase through the micelle-to-crystal bilayer transition, either for drug delivery applications (with a biologically compatible surfactant) or for the purpose of studying the hydrophobic molecule itself. The liquid micellar and solid crystal phases of the alkaline earth metal dodecyl sulfates were investigated using calorimetry, visual inspection, solubilization of a fluorescent probe, and x-ray diffraction. The Krafft temperature and dissolution enthalpy were determined for each surfactant, and partial composition-temperature phase diagrams of magnesium dodecyl sulfate-water, calcium dodecyl sulfate-water, as well as sodium dodecyl sulfate with MgCl2 and CaCl2 are presented. As a proof of concept, fluorescence microscopy images showed that it is, in fact, possible to incorporate a small hydrophobic molecule, diphenylhexatriene, into the solid phase.
The second, and main, part of this thesis expands on work done previously in the lab by using the micropipette technique to study two-phase microsystems. These microsystems consist of a liquid droplet suspended in a second, immiscible liquid medium, and can serve as direct single-particle studies of drug delivery systems that are formed using solvent extraction (e.g., protein encapsulated in a biodegradable polymer), and as model systems with which to study the materials and principles that govern particle formation. The assumptions of the Epstein-Plesset model, which predicts the rate of droplet dissolution, are examined in the context of the micropipette technique. A modification to the model is presented that accounts for the effect a solute has on the dissolution rate. The modification is based on the assumption that the droplet interface is in local thermodynamic equilibrium, and that the water activity in a solution droplet can be used to determine its dissolution (or dehydration) rate. The model successfully predicts the dissolution rates of NaCl solutions into octanol and butyl acetate up to the point of NaCl crystallization. The dehydration of protein solutions (lysozyme or bovine serum albumin) results in glassified microbeads with less than a monolayer of water coverage per protein molecule, which can be controlled by the water activity of the surrounding organic medium. The kinetics of dehydration match the prediction of the activity-based model, and it is shown how the micropipette technique can be used to study the effect of dissolution rate on final particle morphology. By using a stable protein with a simple geometry (lyosyzme), this technique was be used to determine the distance dependence of protein-protein interactions in the range of 2-25 Å, providing the first calculation of the hydration pressure decay length for globular proteins. The distance-dependence of the interaction potential at distances less than 9 Å was found to have a decay length of 1.7 Å, which is consistent with the known decay length of hydration pressure between other biological materials. Biodegradable polyesters, such as poly(lactide-co-glycolide) (PLGA), are some of the most common materials used for the encapsulation of therapeutics in microspheres for long-term drug release. Since they degrade by hydrolysis, release rates depend on water uptake, which can be affected by processing parameters and the material properties of the encapsulated drug. The micropipette technique allows observations not possible on any bulk preparation method. Single-particle observations of microsphere formation (organic solvent extraction into a surrounding aqueous phase) show that as solvent leaves the microsphere and the water concentration in the polymer matrix becomes supersaturated, water phase separates and inclusions initially grow quickly. Once the concentration in the polymer matrix equilibrates with the surrounding aqueous medium, the water inclusions continue to grow due to dissolved impurities, solvent, and/or water-soluble polymer fragments resulting from hydrolysis, all of which locally lower the water activity in the inclusion. Experiments are also presented in which glassified protein microbeads were suspended in PLGA solution prior to forming the single microspheres. This technique allowed the concentration of protein in a single microbead/inclusion to be determined as a function of time.
Dissertation
Części książek na temat "Surfactant-Protein System"
Karbani, Najmunisa, Eswari Dodagatta-Marri, Asif S. Qaseem, Priyaa Madhukaran, Patrick Waters, Anthony G. Tsolaki, Taruna Madan i Uday Kishore. "Purification of Native Surfactant Protein SP-A from Pooled Amniotic Fluid and Bronchoalveolar Lavage". W The Complement System, 257–72. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-724-2_21.
Pełny tekst źródłaDodagatta-Marri, Eswari, Asif S. Qaseem, Najmunisa Karbani, Anthony G. Tsolaki, Patrick Waters, Taruna Madan i Uday Kishore. "Purification of Surfactant Protein D (SP-D) from Pooled Amniotic Fluid and Bronchoalveolar Lavage". W The Complement System, 273–90. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-724-2_22.
Pełny tekst źródłaArai, S., i M. Watanabe. "An Enzymatically Modified Protein as a New Surfactant and its Function to Interact With Water and Oil in an Emulsion System". W Properties of Water in Foods, 49–64. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5103-7_4.
Pełny tekst źródłaT.A. Qashqoosh, Mohsen, Faiza A.M. Alahdal, Yahiya Kadaf Manea, Swaleha Zubair i Saeeda Naqvi. "Influence of Tween 80 Surfactant on the Binding of Roxatidine Acetate and Roxatidine Acetate–loaded Chitosan Nanoparticles to Lysozyme". W Surfactants [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100734.
Pełny tekst źródłaDhariwal, Jyoti, Gaurav Choudhary, Dipti Vaya, Srikanta Sahu, Manish Shandilya, Poonam Kaswan, Ambrish Kumar, Shruti Trivedi, Manoj K. Banjare i Kamalakanta Behera. "Self-Assembled Nanostructures within Ionic Liquids-based Media". W Ionic Liquids: Eco-friendly Substitutes for Surface and Interface Applications, 111–59. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136234123010011.
Pełny tekst źródłaStreszczenia konferencji na temat "Surfactant-Protein System"
Kim, D., S. Q. Tia, M. He i A. E. Herr. "Microfluidic Western blotting: Cationic surfactant based protein sizing integrated with electrostatic immobilization". W 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2011. http://dx.doi.org/10.1109/memsys.2011.5734395.
Pełny tekst źródłaSimion, Demetra, Carmen Gaidău, Mariana Daniela Berechet, Maria Stanca, Cosmin Alexe i Gabriela Păun. "The Influence of Surfactants in Obtaining New Byproducts, for Agriculture Applications". W The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.24.
Pełny tekst źródłaQuan, Glen Lelyn, Kentaro Matsumiya, Michiaki Araki, Yasuki Matsumura i Yoshihiko Hirata. "The role of sophorolipid as carrier of active substances". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/hnkx3869.
Pełny tekst źródła