Gotowa bibliografia na temat „Surfactant Interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Surfactant Interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Surfactant Interaction"
Cheng, Chao, i Shi-Yong Ran. "Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths". Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/863049.
Pełny tekst źródłaTaba, Paulina, Russell F. Howe i Graine Moran. "FTIR AND NMR STUDIES OF ADSORBED CETHYLTRIMETHYLAMMONIUM CHLORIDE IN MCM-41 MATERIALS". Indonesian Journal of Chemistry 8, nr 1 (17.06.2010): 1–6. http://dx.doi.org/10.22146/ijc.21639.
Pełny tekst źródłaYang, Jia, i Rajinder Pal. "Investigation of Surfactant-Polymer Interactions Using Rheology and Surface Tension Measurements". Polymers 12, nr 10 (8.10.2020): 2302. http://dx.doi.org/10.3390/polym12102302.
Pełny tekst źródłaLai, Chiu-Chun, Kuo-Shien Huang, Po-Wei Su, Chang-Mou Wu i Ching-Nan Huang. "Interactions of modified Gemini surfactants: Interactions with direct dyes and dyeing properties in cotton fabrics". Modern Physics Letters B 33, nr 14n15 (28.05.2019): 1940002. http://dx.doi.org/10.1142/s0217984919400025.
Pełny tekst źródłaOstos, Francisco José, José Antonio Lebrón, María Luisa Moyá, Eva Bernal, Ana Flores, Cristian Lépori, Ángeles Maestre, Francisco Sánchez, Pilar López-Cornejo i Manuel López-López. "Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes". International Journal of Molecular Sciences 22, nr 2 (15.01.2021): 826. http://dx.doi.org/10.3390/ijms22020826.
Pełny tekst źródłaLIU, HAO-YANG, XIAN-WU ZOU, YIN-QUAN YUAN i ZHUN-ZHI JIN. "EFFECTS OF INTERACTION WITH SOLVENT AND CHAIN CONFORMATION OF SURFACTANTS ON EMULSIFICATION". Modern Physics Letters B 15, nr 24 (20.10.2001): 1061–68. http://dx.doi.org/10.1142/s0217984901002853.
Pełny tekst źródłaHosseinzadeh, Reza, Mohammad Gheshlagi, Rahele Tahmasebi i Farnaz Hojjati. "Spectrophotometric study of interaction and solubilization of procaine hydrochloride in micellar systems". Open Chemistry 7, nr 1 (1.03.2009): 90–95. http://dx.doi.org/10.2478/s11532-008-0078-4.
Pełny tekst źródłaTazhibayeva, Sagdat, Kuanyshbek Musabekov, Zhenis Kusainova, Ardak Sapieva i Nurlan Musabekov. "Complex Formation of Polyacrylic Acid with Surfactants of Different Hydrophobicity". Applied Mechanics and Materials 752-753 (kwiecień 2015): 212–16. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.212.
Pełny tekst źródłaReddy, M. C. Somasekhara, S. M. Sarvar Jahan, K. Sridevi i G. V. Subba Reddy. "Investigations on Natural Surfactant obtained from Soap-Nuts through Spectrophotometric Interactions with Congo Red and Comparison with Commercial Surfactants". Asian Journal of Chemistry 31, nr 4 (27.02.2019): 907–16. http://dx.doi.org/10.14233/ajchem.2019.21849.
Pełny tekst źródłaNazarova, Anastasia, Arthur Khannanov, Artur Boldyrev, Luidmila Yakimova i Ivan Stoikov. "Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI". International Journal of Molecular Sciences 22, nr 11 (3.06.2021): 6038. http://dx.doi.org/10.3390/ijms22116038.
Pełny tekst źródłaRozprawy doktorskie na temat "Surfactant Interaction"
Gomez, Gil Leticia. "The interaction between cholesterol and surfactant protein-c in lung surfactant". Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210205.
Pełny tekst źródłasurfactant membranes, including the segregation of fluid-ordered and fluid-disordered phases.
However, an excess of cholesterol has been associated with impaired surface activity both in
surfactant models and in surfactant from injured lungs. It has also been reported that surfactant
protein SP-C interacts with cholesterol in lipid/protein interfacial films. In the present study, we
have analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes
containing cholesterol and on the ability of lipid/protein complexes containing surfactant
proteins and cholesterol to form and re-spread interfacial films capable of producing very low
surface tensions upon repetitive compression-expansion cycling. We have also analyzed the effect of cholesterol on the
structure, orientation and dynamic properties of SP-C embedded in physiologically relevant
model membranes.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Farnoud, Amir Mohammad. "Interaction of polymeric particles with surfactant interfaces". Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4627.
Pełny tekst źródłaWindsor, Rosemary. "Polymer surfactant interaction studied by sum frequency spectroscopy". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620464.
Pełny tekst źródłaCarnell, Sarah. "Surfactant interaction and persistence at the contact lens surface". Thesis, Aston University, 2015. http://publications.aston.ac.uk/37488/.
Pełny tekst źródłaMcKenzie, Zofi. "Nanotoxicology : nanoparticle interaction with surfactant proteins A and D". Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/390356/.
Pełny tekst źródłaHohenschutz, Max. "Nano-ions in interaction with non-ionic surfactant self-assemblies". Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS064.
Pełny tekst źródłaNanometer-sized ions (nano-ions), such as ionic boron clusters, polyoxometalates (POMs) and large organic ions, have spawned remarkable interest in recent years due to their ability to adsorb or bind to electrically neutral chemical systems, such as macrocyclic host molecules, colloidal nano-particles, surfactants and polymers etc. The underlying adsorption or binding processes were shown to be driven by a solvent-mediated phenomenon, the chaotropic effect, which drives the nano-ion from the water bulk towards an interface. Thus, hydration water of the ion and the interface is released into the bulk resulting in a bulk water structure recovery. This effect is particularly strong for nano-ions. Therefore, they were termed superchaotropic or hydrophobic ions as an extension to classical (weakly) chaotropic ions such as SCN-. All commonly studied superchaotropes, though chemically diverse, share physical characteristics such as low charge density and high polarizability. Herein, the effects of nano-ions on ethoxylated non-ionic surfactant self-assemblies, micellar and bilayer phases, are elucidated to draw conclusions on their chaotropic and/or hydrophobic nature. By combining small angle scattering of neutrons and x-rays (SANS and SAXS), and phase diagrams, non-ionic surfactant/nano-ion systems are examined and compared, from the nanometer to the macroscopic scale. Thus, all studied nano-ions are found to induce a charging of the surfactant assemblies along with a dehydration of the non-ionic surfactant head groups. Furthermore, chaotropic and hydrophobic ions differ in their effects on the micellar shape. Superchaotropic ions drive the elongated non-ionic surfactant micelles towards spherical micelles (increase in curvature), whereas hydrophobic ions cause a transition towards bilayer phases (decrease in curvature). It is concluded that superchaotropic nano-ions act like ionic surfactants because their addition to non-ionic surfactant systems causes a charging effect. However, nano-ions and ionic surfactants are fundamentally different by their association with the non-ionic surfactant assembly. The nano-ion adsorbs to the non-ionic surfactant heads by the chaotropic effect, while the ionic surfactant anchors into the micelles between the non-ionic surfactant tails by the hydrophobic effect. The comparison of the effects of adding nano-ions or ionic surfactant to non-ionic surfactant was further investigated on foams. The foams were investigated regarding foam film thickness, drainage over time and stability, respectively using SANS, image analysis and conductometry. The tested superchaotropic POM (SiW12O404-, SiW) does not foam in water in contrast to the classical ionic surfactant SDS. Nevertheless, addition of small amounts of SiW or SDS to a non-ionic surfactant foaming solution resulted in wetter foams with longer lifetimes. Meanwhile, the foam film thickness (determined in SANS) is increased due to the electric charging of the non-ionic surfactant monolayers in the foam film. It is concluded that the remarkable behavior of nano-ions – herein on non-ionic surfactant systems – can be extended to colloidal systems, such as foams, polymers, proteins or nanoparticles. This thesis demonstrates that the superchaotropic behavior of nano-ions is a versatile tool to be used in novel formulations of soft matter materials and applications
Crichton, Donna. "The interaction of oils with surfactant monolayers at the air-water surface". Thesis, University of Hull, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310247.
Pełny tekst źródłaOcampo, Minette C. "Protein-Lipid Interactions with Pulmonary Surfactant Using Atomic Force Microscopy". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1395050693.
Pełny tekst źródłaHöhn, Sebastian [Verfasser]. "Interaction of Pluronic polymers with sugar surfactant in microemulsions designed for decontamination / Sebastian Höhn". Bielefeld : Universitätsbibliothek Bielefeld, 2016. http://d-nb.info/1101694106/34.
Pełny tekst źródłaNilsson, Peter. "Interaction between Crosslinked Polyelectrolyte Gels and Oppositely Charged Surfactants". Doctoral thesis, Uppsala University, Department of Pharmacy, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8216.
Pełny tekst źródłaThe interactions between anionic, crosslinked gels and cationic surfactants have been investigated. When exposed to oppositely charged surfactant, the gel collapses into a dense complex of polyion and micelles. During deswelling, the gel phase separates into a micelle-rich, collapsed surface phase, and a swollen, micelle-free core, both still part of the same network. As more surfactant is absorbed, the surface phase grows at the expense of the core, until the entire gel has collapsed. Polyacrylate (PA) gels with dodecyl- (C12TAB), and cetyltrimethylammonium bromide (C16TAB), as well as hyaluronate gels with cetylpyridinium chloride, have been studied.
Kinetic experiments have been performed on macro- as well as microgels, using micromanipulator assisted light microscopy for the latter. A surfactant diffusion controlled deswelling model has been employed to describe the deswelling. The deswelling kinetics of PA microgels have been shown to be controlled by surfactant diffusion through the stagnant layer surrounding the gel, as the surface phase is relatively thin for the major part of the deswelling. For macroscopic PA gels the surface phase is thicker, and the kinetics with C12TAB were therefore also influenced by diffusion through the surface phase, while for C16TAB they were dominated by it.
Relevant parameters have also been determined using equilibrium experiments. An irregular, balloon-forming deswelling pattern, mainly found for macrogels, as well as unexpectedly long lag times and slow deswelling for microgels, are reported and discussed.
The microstructure of fully collapsed PA/C12TAB complexes has been studied using small-angle X-ray scattering. A cubic Pm3n structure was found at low salt concentration, which melted into a disordered micellar phase as the salt concentration was increased. Further increasing the salt concentration dissolved the micelles, resulting in no ordering.
Książki na temat "Surfactant Interaction"
Martinez-Santiago, Jose. Polyelectrolyte-Surfactant Phase Behavior and Mechanisms of Interaction in Multi-Component Systems. [New York, N.Y.?]: [publisher not identified], 2015.
Znajdź pełny tekst źródłaDias, Rita, i Bjrn Lindman, red. DNA Interactions with Polymers and Surfactants. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470286364.
Pełny tekst źródła1942-, Lindman Björn, i Dias Rita, red. DNA interactions with polymers and surfactants. Hoboken, N.J: John Wiley, 2008.
Znajdź pełny tekst źródła1926-, Goddard E. D., i Ananthapadmanabhan Kavssery P. 1952-, red. Interactions of surfactants with polymers and proteins. Boca Raton: CRC Press, 1993.
Znajdź pełny tekst źródłaPeter, Gehr, red. Particle-lung interactions. Wyd. 2. New York: Informa Healthcare, 2010.
Znajdź pełny tekst źródłaDias, Rita, i Bjorn Lindman. DNA Interactions with Polymers and Surfactants. Wiley & Sons, Incorporated, John, 2008.
Znajdź pełny tekst źródłaDias, Rita, i Bjorn Lindman. DNA Interactions with Polymers and Surfactants. Wiley-Blackwell, 2008.
Znajdź pełny tekst źródłaGoddard, E. Desmond. Interactions of Surfactants with Polymers and Proteins. Redaktorzy E. D. Goddard i K. P. Ananthapadmanabhan. CRC Press, 2018. http://dx.doi.org/10.1201/9781351073783.
Pełny tekst źródłaGoddard, E. Desmond. Interactions of Surfactants with Polymers and Proteins. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaGoddard, E. Desmond. Interactions of Surfactants with Polymers and Proteins. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Surfactant Interaction"
Tadros, Tharwat. "Polyelectrolyte-surfactant Interaction". W Encyclopedia of Colloid and Interface Science, 945. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_129.
Pełny tekst źródłaGoddard, E. D. "On Polymer/Surfactant Interaction". W Surfactants in Solution, 219–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3836-3_16.
Pełny tekst źródłaMarangoni, D. Gerrard, Andrew P. Rodenhiser, Jill M. Thomas i Jan C. T. Kwak. "Interaction of Alcohols and Ethoxylated Alcohols with Anionic and Cationic Micelles". W Mixed Surfactant Systems, 194–209. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0501.ch011.
Pełny tekst źródłaTanaka, Fumihiko. "Polymer-surfactant interaction in thermoreversible gels". W Molecular Interactions and Time-Space Organization in Macromolecular Systems, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60226-9_9.
Pełny tekst źródłaPan, Xin, Zhengwei Huang i Chuanbin Wu. "Interaction between Inhalable Nanomedicines and Pulmonary Surfactant". W Organ Specific Drug Delivery and Targeting to the Lungs, 109–48. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003182566-5.
Pełny tekst źródłaGilányi, T., I. Varga i R. Mészáros. "Molecular interaction model of polymer–surfactant complex formation". W From Colloids to Nanotechnology, 179–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45119-8_30.
Pełny tekst źródłaZhou, Ting, i Guiying Xu. "Aggregation Behavior of Ionic Liquid-Based Gemini Surfactants and Their Interaction with Biomacromolecules". W Ionic Liquid-Based Surfactant Science, 127–49. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118854501.ch6.
Pełny tekst źródłaPérez-Gil, J., A. Cruz, M. L. F. Ruano, E. Miguel, I. Plasencia i C. Casals. "Interaction of Pulmonary Surfactant-Associated Proteins with Phospholipid Vesicles". W Molecular Dynamics of Biomembranes, 399–420. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61126-1_31.
Pełny tekst źródłaHögberg, Ida, Fredrik Andersson, Erik Hedenström, Magnus Norgren i Håkan Edlund. "The Interaction Parameter in Binary Surfactant Mixtures of a Chelating Surfactant and a Foaming Agent". W Trends in Colloid and Interface Science XXIV, 17–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19038-4_3.
Pełny tekst źródłaMitsuyasu, H., i T. Honda. "The Effects of Surfactant on Certain Air—Sea Interaction Phenomena". W Wave Dynamics and Radio Probing of the Ocean Surface, 95–115. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Surfactant Interaction"
Alshaikh, Murtdha, Yeh Seng Lee i Berna Hascakir. "Anionic Surfactant and Heavy Oil Interaction during Surfactant-Steam Process". W SPE Western Regional Meeting. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/195254-ms.
Pełny tekst źródłaYang, C. Z. "Adjustment of Surfactant/Polymer Interaction in Surfactant/Polymer Flooding With Polyelectrolytes". W SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/14931-ms.
Pełny tekst źródła"Wettability Alteration on Sandstone Reservoirs Containing Clay Minerals By The Addition Anionic Alkyl Ethoxy Carboxylate Surfactant". W Indonesian Petroleum Association - 46th Annual Convention & Exhibition 2022. Indonesian Petroleum Association, 2022. http://dx.doi.org/10.29118/ipa22-e-298.
Pełny tekst źródłaXu, Limin, Ming Han, Dongqing Cao i Alhasan Fuseni. "New Synergistic Surfactant Mixtures for Improving Oil Production in Carbonate Reservoirs". W SPE Conference at Oman Petroleum & Energy Show. SPE, 2022. http://dx.doi.org/10.2118/200182-ms.
Pełny tekst źródłaSalager, Jean-Louis, Jesus Ontiveros i Ronald Marquez. "How to use in practice a simplified HLDN linear equation for surfactant mixtures". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/uthm3166.
Pełny tekst źródłaMehan, Sumit, Vinod K. Aswal i Joachim Kohlbrecher. "Structural study of surfactant-dependent interaction with protein". W NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917622.
Pełny tekst źródłaRay, D., i V. K. Aswal. "Tuning of depletion interaction in nanoparticle-surfactant systems". W SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872534.
Pełny tekst źródłaFeng, Lijie, i Xu Liang. "Implications of Shale Oil Compositions on Surfactant Efficacy for Wettability Alteration". W SPE Middle East Unconventional Resources Conference and Exhibition. SPE, 2015. http://dx.doi.org/10.2118/spe-172974-ms.
Pełny tekst źródłaSaputra, I. Wayan Rakananda, i David S. Schechter. "A Temperature Operating Window Concept for Application of Nonionic Surfactants for EOR in Unconventional Shale Reservoirs". W SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206346-ms.
Pełny tekst źródłaBian, Yu, i Pinn-Tsong Chiang. "Effect of Hydrophobic/Hydrophilic Groups of Surfactants on Wax Deposition Studied by Model Waxy Oil System". W SPE International Conference on Oilfield Chemistry. SPE, 2023. http://dx.doi.org/10.2118/213821-ms.
Pełny tekst źródłaRaporty organizacyjne na temat "Surfactant Interaction"
Gabitto, Jorge, i Kishore K. Mohanty. Surfactant-Polymer Interaction for Improved Oil Recovery. Office of Scientific and Technical Information (OSTI), styczeń 2002. http://dx.doi.org/10.2172/789941.
Pełny tekst źródłaUnknown. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), wrzesień 1997. http://dx.doi.org/10.2172/766780.
Pełny tekst źródłaUnknown. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), październik 1998. http://dx.doi.org/10.2172/766781.
Pełny tekst źródłaFrench, T. R., i C. B. Josephson. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. Office of Scientific and Technical Information (OSTI), luty 1993. http://dx.doi.org/10.2172/10130748.
Pełny tekst źródłaP. Somasundaran. Mineral-Surfactant Interaction for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery. Office of Scientific and Technical Information (OSTI), wrzesień 2006. http://dx.doi.org/10.2172/902900.
Pełny tekst źródłaFrench, T. R., i C. B. Josephson. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss]. Office of Scientific and Technical Information (OSTI), luty 1993. http://dx.doi.org/10.2172/6781205.
Pełny tekst źródłaHirsa, Amir. Interaction of Surfactants with Shear Flows and Surface Waves. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1997. http://dx.doi.org/10.21236/ada628926.
Pełny tekst źródłaP. Somasundaran. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/882581.
Pełny tekst źródłaP. Somasundaran. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/835274.
Pełny tekst źródłaP. Somasundaran. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), kwiecień 2005. http://dx.doi.org/10.2172/840105.
Pełny tekst źródła