Gotowa bibliografia na temat „Surface substrate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Surface substrate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Surface substrate"
Kovalev, Alexander E., Alexander E. Filippov i Stanislav N. Gorb. "Insect wet steps: loss of fluid from insect feet adhering to a substrate". Journal of The Royal Society Interface 10, nr 78 (6.01.2013): 20120639. http://dx.doi.org/10.1098/rsif.2012.0639.
Pełny tekst źródłaChaky, J., K. Anderson, M. Moss i L. Vaillancourt. "Surface Hydrophobicity and Surface Rigidity Induce Spore Germination in Colletotrichum graminicola". Phytopathology® 91, nr 6 (czerwiec 2001): 558–64. http://dx.doi.org/10.1094/phyto.2001.91.6.558.
Pełny tekst źródłaXie, Z. Y., C. H. Wei, L. Y. Li, J. H. Edgar, J. Chaudhuri i C. Ignatiev. "Effects of Surface Preparation on Epitaxial GaN on 6H-SiC Deposited Via MOCVD". MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 281–86. http://dx.doi.org/10.1557/s1092578300002593.
Pełny tekst źródłaSteigmann, D. J., i R. W. Ogden. "Elastic surface—substrate interactions". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 455, nr 1982 (8.02.1999): 437–74. http://dx.doi.org/10.1098/rspa.1999.0320.
Pełny tekst źródłaLin, I.-Nan. "Surface acoustic wave substrate". Journal of the Acoustical Society of America 126, nr 2 (2009): 931. http://dx.doi.org/10.1121/1.3204337.
Pełny tekst źródłaZhang, An Liang, i Yan Zha. "Transportation of Droplets within Two Substrates by Help of Surface Acoustic Wave". Applied Mechanics and Materials 160 (marzec 2012): 92–96. http://dx.doi.org/10.4028/www.scientific.net/amm.160.92.
Pełny tekst źródłaСлюсарь, Денис Витальевич, Владимир Петрович Колесник, Олег Николаевич Чугай, Леонид Васильевич Литовченко, Николай Петрович Степанушкин, Сергей Леонидович Абашин i Сергей Владимирович Олейник. "ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА МОРФОЛОГИЮ ПОВЕРХНОСТИ ПОКРЫТИЙ ТИПА WC, ОСАЖДЕННЫХ ИОННО-ПЛАЗМЕННЫМ МЕТОДОМ". Aerospace technic and technology, nr 6 (20.12.2018): 76–82. http://dx.doi.org/10.32620/aktt.2018.6.10.
Pełny tekst źródłaCzarnecki, Sławomir, Jerzy Hoła i Łukasz Sadowski. "The Use of a 3D Scanner for Evaluating the Morphology of a Sandblasted Concrete Surface". Key Engineering Materials 662 (wrzesień 2015): 193–96. http://dx.doi.org/10.4028/www.scientific.net/kem.662.193.
Pełny tekst źródłaLukauskaitė, Raimonda, Algirdas Vaclovas Valiulis, Olegas Černašėjus i Jelena Škamat. "RESEARCH INTO NI-CR-SI-B COATING SPRAYED ONTO ALUMINIUM SUBSTRATE USING THE METHOD OF PLASMA SPRAY / NI-CR-SI-B DANGOS, UŽPURKŠTOS ANT ALIUMINIO SUBSTRATO PLAZMINIO PURŠKIMO BŪDU, TYRIMAS". Mokslas - Lietuvos ateitis 6, nr 4 (4.02.2013): 546–49. http://dx.doi.org/10.3846/mla.2012.89.
Pełny tekst źródłaStockdale, Bill. "Substrate Materials Micromachining and Surface Considerations". JALA: Journal of the Association for Laboratory Automation 4, nr 2 (maj 1999): 35–39. http://dx.doi.org/10.1177/221106829900400208.
Pełny tekst źródłaRozprawy doktorskie na temat "Surface substrate"
Kambhampati, Patanjali. "Adsorbate-substrate charge transfer excited states /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaLamble, G. M. "Surface extended X-ray absorption fine structure studies of chlorine and caesium adsorbed on silver single crystal surfaces". Thesis, University of Liverpool, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380102.
Pełny tekst źródłaLawson, Glenn E. "The effects of evaporation rate, solvent, and substrate on the surface segregation of block copolymers". Thesis, This resource online, 1985. http://scholar.lib.vt.edu/theses/available/etd-03042009-041008/.
Pełny tekst źródłaSharma, Narayan. "Solution Processable Surface Enhanced Raman Spectroscopy (SERS) Substrate". Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434375587.
Pełny tekst źródłaAl-Mulla, Talal. "Rational manipulation of substrate-supported graphene by heterogeneity of substrate surface and material composition". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109645.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 95-104).
In many graphene-based devices graphene is adhered to a substrate that influences its performance, rather than being present in a free standing form. The interaction of graphene with these substrates can lead to deformations that give rise to out-of-plane architectures with new properties such as superhydrophobicity, opened electronic band gap, and higher in-plane rigidity. Earlier experiments and simulations with graphene-substrate interfaces demonstrating reversible and repeatable stacking of out-of-plane buckled graphene to create ridges, which are stacked protrusions of graphene, warrant a detailed understanding of the underlying mechanisms of graphene ridge formation, especially for design of tailored nanostructures. Ridges are created through substrate-mediated compression of graphene, therefore, these ridges should be related to the graphene-substrate interface. It is unknown what the direct effect of the substrate on ridge formation is besides the work done studying graphene's mechanical response to compression. It is necessary to understand how the substrate affects graphene deformation in order to fully utilize the range of accessible graphene deformation shapes. To systematically study the formation of ridges in graphene, molecular dynamics simulations are performed to characterize the deformation of graphene on substrate during and after axial compression of graphene nanoribbons, high aspect ratio (10:1) single layer sheets of graphene in this work. This is done to investigate the hypothesis that graphene deformation depends on the underlying substrate in terms of corrugation wavelength and amplitude and graphene-substrate adhesion energy. In the first part of this thesis a quantitative scheme is formulated to characterize and predict these deformations. A critical value of interfacial adhesion energy marks a transition point that separates two deformation regimes of graphene on substrate under uniaxial compression; the deformation regimes are binary featuring the stacking of graphene after buckling in one case and no stacking, otherwise. These ridges are a product of the graphene limit point buckling, where growing out-of-plane folds of graphene stack and self-adhere. In the second part of this thesis, after establishing the role of substrate and key interfacial properties, the atomistic mechanisms underlying the formation, evolution, and localization of graphene ridges are investigated using fracture mechanics theory and molecular dynamics simulations. It is shown that there is no intrinsic characteristic length scale over which to achieve certain graphene shapes or see any repeated shapes as suggested in previous experiments, but instead these shapes can be tuned by substrate selection and design, a novel approach presented in this thesis. Moreover, a major result of this work is that the location and density of surface features in graphene-substrate systems can be controlled by substrate engineering at nanoscale resolutions, which could be used for developing graphene-based devices with a more efficient use of material, or with tailored distribution of surface futures that lead to specific applications. Efficiency gains can be made through use of less material and more controlled spacing of graphene ridges. The immediate impact of this work is most clearly realized in large scale manipulation of graphene where targeted deformations of different regions of the same graphene sheet can be executed using a single rationally designed substrate. Shifting the mindset from using the substrate as a stage, but as a tool, opens up the potential for more intricate graphene deformations at the nanoscale.
by Talal Al-Mulla.
S.M. in Civil and Environmental Engineering
Cornelius, Carrie Elizabeth Ms. "Atmospheric Plasma Characterization and Mechanisms of Substrate Surface Modification". NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-11092006-175630/.
Pełny tekst źródłaJohnston, Kyle S. "Planar substrate surface plasmon resonance probe with multivariant calibration /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6069.
Pełny tekst źródłaStamp, Jennifer D. "Associations between stream macroinvertebrate communities and surface substrate size distributions". Ohio : Ohio University, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1103232587.
Pełny tekst źródłaVithayathil, Anne M. (Anne Marie) 1978. "Substrate resistance extraction using a multi-domain surface integral formulation". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28543.
Pełny tekst źródłaIncludes bibliographical references (p. 65-66).
In recent years, mixed-signal designs have become more pervasive, due to their efficient use of area and power. Unfortunately, with sensitive analog and fast digital circuits sharing a common, non-ideal substrate, such designs carry the additional design burden of electromagnetic coupling between contacts. This thesis presents a method that quickly extracts the electroquasistatic coupling resistances between contacts on a planar, rectangular, two-layer lossy substrate, using an FFT-accelerated multi-domain surface integral formulation. The multi-domain surface integral formulation allows for multi-layered substrates, without meshing the volume. This method has the advantages of easy meshing, simple implementation, and FFT-accelerated iterative methods. Also, a three-dimensional variant of this method allows for more complex substrate geometries than some other surface integral techniques, such as multilayered Green's functions; this three-dimensional problem and its solution are presented in parallel with the planar substrate problem and solution. Results from a C++ implementation are presented for the planar problem.
by Anne M. Vithayathil.
S.M.
Stamp, Jennifer. "Associations between stream macroinvertebrate communities and surface substrate size distributions". Ohio University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1103232587.
Pełny tekst źródłaKsiążki na temat "Surface substrate"
Substrate surface preparation handbook: Max Robertson. Norwood, MA: Artech House, 2012.
Znajdź pełny tekst źródłaGhosn, Louis J. Residual stresses in thermal barrier coatings for a Cu-8Cr-4Nb substrate system. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Znajdź pełny tekst źródłaBrennan, John David. Fluorescence transduction of an enzyme-substrate reaction by modulation of the structure of lipid membranes and surface stabilized fatty acid membranes. Ottawa: National Library of Canada, 1990.
Znajdź pełny tekst źródłaAtkinson, B. M. Characterization of substrates for surface-enhanced Raman scattering. Manchester: UMIST, 1992.
Znajdź pełny tekst źródłaPolymer brushes: Substrates, technologies, and properties. Boca Raton: Taylor & Francis, 2012.
Znajdź pełny tekst źródłaEberl, Karl. Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates. Dordrecht: Springer Netherlands, 1995.
Znajdź pełny tekst źródłaWilliams, R. Sam. Effects of acid rain on painted wood surfaces: Importance of the substrate. Madison, WI: U.S. Dept. of Agriculture, Forest Products Laboratory, 1987.
Znajdź pełny tekst źródłaHickey, Michael A. Reduced surface-wave twin arc-slot antennas on electrically thick dielectric substrates. Ottawa: National Library of Canada, 2001.
Znajdź pełny tekst źródłaSutcliffe, P. J. SIMS surface studies of silicon substrates for low temperature chemical vapour deposition. Manchester: UMIST, 1992.
Znajdź pełny tekst źródłaHahn, H. J. Method for the production of strongly adhesive metal films on titanium and titanium alloys with a metallization process [microform]. Washington D.C: National Aeronautics and Space Administration, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Surface substrate"
Nyberg, Graeme L., i Wei Shen. "The Determination of Adsorbate-Substrate Bonding via UPS". W Surface Science, 149–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80281-2_13.
Pełny tekst źródłaHashimoto, Ken-ya. "Selection of Substrate Material". W Surface Acoustic Wave Devices in Telecommunications, 163–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04223-6_6.
Pełny tekst źródłaLi, Quan, Y. Lifshitz, L. D. Marks, I. Bello i S. T. Lee. "Nucleation and Growth of Cubic Boron Nitride Under Different Substrate Bias". W Surface Engineering, 177–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788325.ch18.
Pełny tekst źródłaNikolov, A., i D. Wasan. "Superspreading: Role of the Substrate Surface Energy". W Understanding Complex Systems, 301–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34070-3_27.
Pełny tekst źródłaNilsson, Lars-Olof. "Moisture in a Substrate Before Surface Covering". W Methods of Measuring Moisture in Building Materials and Structures, 229–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74231-1_25.
Pełny tekst źródłaHuang, Jianyong, Lei Qin, Chunyang Xiong i Jing Fang. "A Study on Cell-Substrate Interfacial Interaction Modulated by Substrate Stiffness". W IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 117–24. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_10.
Pełny tekst źródłaWhite, J. M. "Molecular Photochemistry on Surfaces: Role of Adsorbate-Substrate Structure". W Springer Series in Surface Sciences, 67–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78080-6_11.
Pełny tekst źródłaHasselbrink, E., S. Nettesheim, M. Wolf, A. Cassuto i G. Ertl. "Substrate Mediated Photodissociation of NO2/N2O4 Adsorbed on Pd(111)". W Springer Series in Surface Sciences, 75–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84145-3_8.
Pełny tekst źródłaHolmes, Robert R. "Substrate Materials and Design for Fine Pitch Technology". W Handbook of Fine Pitch Surface Mount Technology, 134–60. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4684-1437-0_4.
Pełny tekst źródłaHecq, M., i P. Legrand. "In Situ Substrate Chemical Analysis during Sputter Deposition". W Plasma-Surface Interactions and Processing of Materials, 317–18. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1946-4_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Surface substrate"
Kimura, Y., S. Isawa, M. Chino, H. Hara, K. Tamayama i A. Suzuki. "Ionic migration behavior in minute wiring on flexible substrate". W CONTACT/SURFACE 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/secm070081.
Pełny tekst źródłaJohnson, Andrew, Andrew Joel, Andrew Clark, Dan Pearce, Matthew Geen, Wang Wang, Rodney Pelzel i Sung Wook Lim. "High performance 940nm VCSELs on large area germanium substrates: the ideal substrate for volume manufacture". W Vertical-Cavity Surface-Emitting Lasers XXV, redaktorzy Kent D. Choquette i Chun Lei. SPIE, 2021. http://dx.doi.org/10.1117/12.2583207.
Pełny tekst źródłaAlvarez-Fregoso, O., A. Leyva, Ma Eugenia Mendoza-A. i C. Tabares Muñoz. "Substrate influence on structure and morphology of YBCO films". W The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51167.
Pełny tekst źródłaRomero-Paredes R., G. "Optical anisotropy in porous silicon films related to silicon substrate resistivity". W The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51115.
Pełny tekst źródłaAparna, Yarrama Reddy, K. V. Rao, G. Balanagi Reddy, Alka B. Garg, R. Mittal i R. Mukhopadhyay. "Surface Segregation of Substrate Metal on Film Surface". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605996.
Pełny tekst źródłaJohnston, Kyle S., Timothy M. Chinowsky i Sinclair S. Yee. "Planar substrate surface plasmon resonance probe". W SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, redaktor Robert A. Lieberman. SPIE, 1996. http://dx.doi.org/10.1117/12.260591.
Pełny tekst źródłaXinru Li, Ching-Kuang C. Tzuang i Hsien-Shun Wu. "Surface-wave leakage from substrate integrated waveguide on grounded dielectric substrate". W 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014. IEEE, 2014. http://dx.doi.org/10.1109/mwsym.2014.6848551.
Pełny tekst źródłaPei, Y. T., D. Martinez-Martinez i J. Th M. De Hosson. "Flexible DLC film coated rubber: friction and the effect of viscoelastic deformation of rubber substrate". W CONTACT AND SURFACE 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/secm130121.
Pełny tekst źródłaXu, Zhiyue, Keng Leong i Paul Sanders. "Surface alloying of silicon into aluminum substrate". W ICALEO® ‘98: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1998. http://dx.doi.org/10.2351/1.5059114.
Pełny tekst źródłaDarinskii, Alexander, Manfred Weihnacht i Hagen Schmidt. "Surface acoustic wave scattering by substrate edges". W 2014 IEEE International Ultrasonics Symposium (IUS). IEEE, 2014. http://dx.doi.org/10.1109/ultsym.2014.0512.
Pełny tekst źródłaRaporty organizacyjne na temat "Surface substrate"
Antrim, L. D., R. M. Thom i W. W. Gardiner. Lincoln Park shoreline erosion control project: Monitoring for surface substrate, infaunal bivalves and eelgrass, 1993. Office of Scientific and Technical Information (OSTI), wrzesień 1993. http://dx.doi.org/10.2172/10185939.
Pełny tekst źródłaBartels, Ludwig. Surface Reactions Following Ultra Fast Substrate Excitation: A Path Towards Atomic Scale Resolution of High-temperature Reactions at Metal Surfaces. Fort Belvoir, VA: Defense Technical Information Center, luty 2010. http://dx.doi.org/10.21236/ada564034.
Pełny tekst źródłaToncy, Michael F., Joseph G. Cordon, Mahesh G. Samant, Gary L. Borges i Larry B. Sorensen. Surface X-Ray Scattering Measurements of the Substrate Induced Spatial Modulation of an Incommensurate Adsorbed Monolayer. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada232625.
Pełny tekst źródłaLovell, Alexis, Garrett Hoch, Christopher Donnelly, Jordan Hodge, Robert Haehnel i Emily Asenath-Smith. Shear and tensile delamination of ice from surfaces : The Ice Adhesion Peel Test (IAPT). Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/41781.
Pełny tekst źródłaJian Yu i Ishwara B. Bhat. Effect of Substrate Orientation on the Growth Rate, Surface Morphology and Silicon Incorporation on GaSb Grown by Metal-Organic Vapor Phase Epitaxy. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/822279.
Pełny tekst źródłaYang, Zhenguo, Guanguang Xia, Xiaohong S. Li, Prabhakar Singh i Jeffry W. Stevenson. Fabrication of (Mn,Co)3O4 Surface Coatings onto Alloy Substrates. Office of Scientific and Technical Information (OSTI), kwiecień 2007. http://dx.doi.org/10.2172/1031994.
Pełny tekst źródłaKoche, Rahulkumar. Measurement and modeling of passive surface mount devices on FR4 substrates. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.754.
Pełny tekst źródłaHarnisch, Jennifer Anne. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification. Office of Scientific and Technical Information (OSTI), styczeń 2001. http://dx.doi.org/10.2172/803828.
Pełny tekst źródłaXu, Zhong. The Xu-Tec process of introducing normally solid materials into substrate surfaces. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/7166766.
Pełny tekst źródłaVelev, Orlin D., Eric W. Kaler i Abraham M. Lenhoff. Characterization and Optimization of Novel Nanostructured Metallic Substrates for Surface Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2001. http://dx.doi.org/10.21236/ada398973.
Pełny tekst źródła