Artykuły w czasopismach na temat „Surface redox reduction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Surface redox reduction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hua, Chunxia, Shuliang Dou, Hongbo Xu, Shuai Hou, Hangchuan Zhang, Panpan Zhang, Yang Gan, Jiupeng Zhao i Yao Li. "A nanostructured Fc(COCH3)2film prepared using silica monolayer colloidal crystal templates and its electrochromic properties". Physical Chemistry Chemical Physics 19, nr 45 (2017): 30756–61. http://dx.doi.org/10.1039/c7cp05074g.
Pełny tekst źródłaZhu, Yun Guang, Chuankun Jia, Jing Yang, Feng Pan, Qizhao Huang i Qing Wang. "Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li–O2 battery". Chemical Communications 51, nr 46 (2015): 9451–54. http://dx.doi.org/10.1039/c5cc01616a.
Pełny tekst źródłaBradley, Kieren, Kyriakos Giagloglou, Brian E. Hayden, Hugo Jungius i Chris Vian. "Reversible perovskite electrocatalysts for oxygen reduction/oxygen evolution". Chemical Science 10, nr 17 (2019): 4609–17. http://dx.doi.org/10.1039/c9sc00412b.
Pełny tekst źródłaVoylov, D. N., I. N. Ivanov, V. I. Bykov, S. B. Tsybenova, I. A. Merkulov, S. A. Kurochkin, A. P. Holt, A. M. Kisliuk i A. P. Sokolov. "Oscillatory behaviour of the surface reduction process of multilayer graphene oxide at room temperature". RSC Advances 6, nr 81 (2016): 78194–201. http://dx.doi.org/10.1039/c6ra14414d.
Pełny tekst źródłaHeyrovský, Michael, i Ladislav Novotný. "Interfacial interactions and the heterogeneous one-electron reduction of methyl viologen". Collection of Czechoslovak Chemical Communications 52, nr 5 (1987): 1097–114. http://dx.doi.org/10.1135/cccc19871097.
Pełny tekst źródłaWhittingham, Alexander W. H., Jordan Lau i Rodney D. L. Smith. "Mechanistic insights into the spontaneous reaction between CO2 and La2–xSrxCuO4". Canadian Journal of Chemistry 99, nr 9 (wrzesień 2021): 773–79. http://dx.doi.org/10.1139/cjc-2021-0059.
Pełny tekst źródłaAndreeva, Donka Ch, Matey G. Kalchev i Atanas A. Andreev. "Surface Redox Strength and Catalytic Activity of the CuO/ZnO System". Collection of Czechoslovak Chemical Communications 57, nr 12 (1992): 2561–64. http://dx.doi.org/10.1135/cccc19922561.
Pełny tekst źródłaGross-Wittke, A., G. Gunkel i A. Hoffmann. "Temperature effects on bank filtration: redox conditions and physical-chemical parameters of pore water at Lake Tegel, Berlin, Germany". Journal of Water and Climate Change 1, nr 1 (1.03.2010): 55–66. http://dx.doi.org/10.2166/wcc.2010.005.
Pełny tekst źródłaVecchietti, Julia, Sebastián Collins, Wenqian Xu, Laura Barrio, Darío Stacchiola, Mónica Calatayud, Frederik Tielens, Juan José Delgado i Adrian Bonivardi. "Surface Reduction Mechanism of Cerium–Gallium Mixed Oxides with Enhanced Redox Properties". Journal of Physical Chemistry C 117, nr 17 (24.04.2013): 8822–31. http://dx.doi.org/10.1021/jp400285b.
Pełny tekst źródłaMason, Joseph, Christopher Batchelor-McAuley i Richard G. Compton. "Surface modification imparts selectivity, facilitating redox catalytic studies: quinone mediated oxygen reduction". Physical Chemistry Chemical Physics 15, nr 21 (2013): 8362. http://dx.doi.org/10.1039/c3cp50607j.
Pełny tekst źródłaCeré, Silvia, Marcela Vazquez, Susana R. de Sánchez i David J. Schiffrin. "Surface redox catalysis and reduction kinetics of oxygen on copper–nickel alloys". Journal of Electroanalytical Chemistry 505, nr 1-2 (czerwiec 2001): 118–24. http://dx.doi.org/10.1016/s0022-0728(01)00469-7.
Pełny tekst źródłaTammeveski, Kaido, Kyösti Kontturi, Richard J. Nichols, Robert J. Potter i David J. Schiffrin. "Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes". Journal of Electroanalytical Chemistry 515, nr 1-2 (listopad 2001): 101–12. http://dx.doi.org/10.1016/s0022-0728(01)00633-7.
Pełny tekst źródłaFang, Wei-Chuan, i Wei-Lee Fang. "Fast and reversible surface redox reduction in V2O5 dispersed on CNx nanotubes". Chemical Communications, nr 41 (2008): 5236. http://dx.doi.org/10.1039/b809253b.
Pełny tekst źródłaZhao, Lili, Chang Liu, Zhuangzhuang Qiao, Yan Yao i Jianbin Luo. "Reduction responsive and surface charge switchable polyurethane micelles with acid cleavable crosslinks for intracellular drug delivery". RSC Advances 8, nr 32 (2018): 17888–97. http://dx.doi.org/10.1039/c8ra01581c.
Pełny tekst źródłaLiu, Ting-Hang, Mohammad A. Yaghmour, Miin-Huey Lee, Thomas M. Gradziel, Johan H. J. Leveau i Richard M. Bostock. "An roGFP2-Based Bacterial Bioreporter for Redox Sensing of Plant Surfaces". Phytopathology® 110, nr 2 (luty 2020): 297–308. http://dx.doi.org/10.1094/phyto-07-19-0237-r.
Pełny tekst źródłaGandhi, Mansi, Desikan Rajagopal i Annamalai Senthil Kumar. "In situ electro-organic synthesis of hydroquinone using anisole on MWCNT/Nafion modified electrode surface and its heterogeneous electrocatalytic reduction of toxic Cr(vi) species". RSC Advances 11, nr 7 (2021): 4062–76. http://dx.doi.org/10.1039/d0ra10370e.
Pełny tekst źródłaDeng, Ying, Zuorui Wen, Guiling Luo, Hui Xie, Juan Liu, Yaru Xi, Guangjiu Li i Wei Sun. "Carbon Nitride Nanosheet and Myoglobin Modified Electrode for Electrochemical Sensing Investigations". Current Analytical Chemistry 16, nr 6 (13.08.2020): 703–10. http://dx.doi.org/10.2174/1573411015666190710223818.
Pełny tekst źródłaGorny, Josselin, Gabriel Billon, Catherine Noiriel, David Dumoulin, Ludovic Lesven i Benoît Madé. "Chromium behavior in aquatic environments: a review". Environmental Reviews 24, nr 4 (grudzień 2016): 503–16. http://dx.doi.org/10.1139/er-2016-0012.
Pełny tekst źródłaZheleznyak, А. R., О. М. Bakalinska, А. V. Brichka, G. O. Kalenyuk i М. Т. Каrtel. "Properties, production methods and use of tin nanoxide". Surface 12(27) (30.12.2020): 193–230. http://dx.doi.org/10.15407/surface.2020.12.193.
Pełny tekst źródłaYu, Tong, i Paul L. Bishop. "Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes". Water Science and Technology 37, nr 4-5 (1.02.1998): 195–98. http://dx.doi.org/10.2166/wst.1998.0618.
Pełny tekst źródłaHaidar, Fatima, Mathieu Maas, Andrea Piarristeguy, Annie Pradel, Sara Cavaliere i Marie-Christine Record. "Ultra-Thin Platinum Deposits by Surface-Limited Redox Replacement of Tellurium". Nanomaterials 8, nr 10 (15.10.2018): 836. http://dx.doi.org/10.3390/nano8100836.
Pełny tekst źródłaCeré, Silvia, Marcela Vazquez, Susana R. de Sánchez i David J. Schiffrin. "Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper–nickel alloys". Journal of Electroanalytical Chemistry 470, nr 1 (lipiec 1999): 31–38. http://dx.doi.org/10.1016/s0022-0728(99)00207-7.
Pełny tekst źródłaMoretti, Roberto, i Andri Stefánsson. "Volcanic and Geothermal Redox Engines". Elements 16, nr 3 (1.06.2020): 179–84. http://dx.doi.org/10.2138/gselements.16.3.179.
Pełny tekst źródłaLiu, Zhiming, Haiyan Liu, Hui Zeng i Qi Xu. "A novel Ce–Sb binary oxide catalyst for the selective catalytic reduction of NOx with NH3". Catalysis Science & Technology 6, nr 22 (2016): 8063–71. http://dx.doi.org/10.1039/c6cy01756h.
Pełny tekst źródłaHan, Young-Soo, Hoon Young Jeong, Sung Pil Hyun, Kim F. Hayes i Chul-Min Chon. "Beam-induced redox transformation of arsenic during AsK-edge XAS measurements: availability of reducing or oxidizing agents and As speciation". Journal of Synchrotron Radiation 25, nr 3 (14.03.2018): 763–70. http://dx.doi.org/10.1107/s1600577518002576.
Pełny tekst źródłaKung, Johannes W., Sven Baumann, Martin von Bergen, Michael Müller, Peter-Leon Hagedoorn, Wilfred R. Hagen i Matthias Boll. "Reversible Biological Birch Reduction at an Extremely Low Redox Potential". Journal of the American Chemical Society 132, nr 28 (21.07.2010): 9850–56. http://dx.doi.org/10.1021/ja103448u.
Pełny tekst źródłaLi, Chenglong, Zhitao Han, Yuqing Hu, Tingjun Liu i Xinxiang Pan. "Synthesis of W-modified CeO2/ZrO2 catalysts for selective catalytic reduction of NO with NH3". RSC Advances 12, nr 42 (2022): 27309–20. http://dx.doi.org/10.1039/d2ra04862k.
Pełny tekst źródłaLiu, Chang, Yayuan Guan, Yuling Su, Lili Zhao, Fancui Meng, Yongchao Yao i Jianbin Luo. "Surface charge switchable and core cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy". RSC Advances 7, nr 18 (2017): 11021–29. http://dx.doi.org/10.1039/c7ra00346c.
Pełny tekst źródłaDaniel, P., S. I. Shylin, H. Lu, M. N. Tahir, M. Panthöfer, T. Weidner, A. Möller, V. Ksenofontov i W. Tremel. "The surface chemistry of iron oxide nanocrystals: surface reduction of γ-Fe2O3 to Fe3O4 by redox-active catechol surface ligands". Journal of Materials Chemistry C 6, nr 2 (2018): 326–33. http://dx.doi.org/10.1039/c7tc04795a.
Pełny tekst źródłaMetcalfe, Clive, Peter Cresswell, Laura Ciaccia, Benjamin Thomas i A. Neil Barclay. "Labile disulfide bonds are common at the leucocyte cell surface". Open Biology 1, nr 3 (listopad 2011): 110010. http://dx.doi.org/10.1098/rsob.110010.
Pełny tekst źródłaSalusso, Davide, Silvia Mauri, Gabriele Deplano, Piero Torelli, Silvia Bordiga i Sergio Rojas-Buzo. "MOF-Derived CeO2 and CeZrOx Solid Solutions: Exploring Ce Reduction through FTIR and NEXAFS Spectroscopy". Nanomaterials 13, nr 2 (9.01.2023): 272. http://dx.doi.org/10.3390/nano13020272.
Pełny tekst źródłaPhilipossian, Ara, Yasa Sampurno, Fritz Redeker, Kiana A. Cahue i Jason J. Keleher. "Slurry Activation for Enhanced Surface Redox Reactions in CMP". Solid State Phenomena 346 (14.08.2023): 311–17. http://dx.doi.org/10.4028/p-zds0xu.
Pełny tekst źródłaFonseca, Juliana, Nicolas Bion, Yordy E. Licea, Cláudia M. Morais, Maria do Carmo Rangel, Daniel Duprez i Florence Epron. "Unexpected redox behaviour of large surface alumina containing highly dispersed ceria nanoclusters". Nanoscale 11, nr 3 (2019): 1273–85. http://dx.doi.org/10.1039/c8nr07898j.
Pełny tekst źródłaWang, Zhao-Wen, Masayuki Nara, Yong-Xiao Wang i Michael I. Kotlikoff. "Redox Regulation of Large Conductance Ca2+-activated K+ Channels in Smooth Muscle Cells". Journal of General Physiology 110, nr 1 (1.07.1997): 35–44. http://dx.doi.org/10.1085/jgp.110.1.35.
Pełny tekst źródłaParvanian, Amir Masoud, Hamidreza Salimijazi, Mehdi Shabaninejad, Ulrike Troitzsch, Peter Kreider, Wojciech Lipiński i Mohammad Saadatfar. "Thermochemical CO2 splitting performance of perovskite coated porous ceramics". RSC Advances 10, nr 39 (2020): 23049–57. http://dx.doi.org/10.1039/d0ra02353a.
Pełny tekst źródłaBernas, Tytus, i Jurek Dobrucki. "Extracellular Reduction of Cat1 Free Radical by Transformed Human Hepatocytes". Bioscience Reports 18, nr 6 (1.12.1998): 341–50. http://dx.doi.org/10.1023/a:1020213400556.
Pełny tekst źródłaFukushi, Yuka, Yuichi Yokochi, Ken-ichi Wakabayashi, Keisuke Yoshida i Toru Hisabori. "Verification of the Relationship between Redox Regulation of Thioredoxin Target Proteins and Their Proximity to Thylakoid Membranes". Antioxidants 11, nr 4 (13.04.2022): 773. http://dx.doi.org/10.3390/antiox11040773.
Pełny tekst źródłaWang, Zhao, Xinyu Guo, Lingyun Hao, Xiaojuan Zhang, Qing Lin i Ruilong Sheng. "Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery". Materials 15, nr 18 (18.09.2022): 6476. http://dx.doi.org/10.3390/ma15186476.
Pełny tekst źródłaYamashita, Yutaro, Shohei Tashiro, Yoshiki Ishii, Takayuki Uchihashi, Nobuyuki Matsushita, Ryou Kubota i Mitsuhiko Shionoya. "Shape-selective one-step synthesis of branched gold nanoparticles on the crystal surface of redox-active PdII-macrocycles". Dalton Transactions 51, nr 4 (2022): 1318–24. http://dx.doi.org/10.1039/d1dt03973c.
Pełny tekst źródłaTrudgeon, David P., i Xiaohong Li. "Enhanced Surface Area Carbon Cathodes for the Hydrogen–Bromine Redox Flow Battery". Batteries 8, nr 12 (6.12.2022): 276. http://dx.doi.org/10.3390/batteries8120276.
Pełny tekst źródłaHadinugrahaningsih, Tritiyatma, Yuli Rahmawati i Elma Suryani. "An analysis of preservice Chemistry teachers’ misconceptions of reduction-oxidation reaction concepts". Journal of Technology and Science Education 12, nr 2 (7.07.2022): 448. http://dx.doi.org/10.3926/jotse.1566.
Pełny tekst źródłaŠuligoj, Andraž, Iztok Arčon, Matjaž Mazaj, Goran Dražić, Denis Arčon, Pegie Cool, Urška Lavrenčič Štangar i Nataša Novak Tušar. "Surface modified titanium dioxide using transition metals: nickel as a winning transition metal for solar light photocatalysis". Journal of Materials Chemistry A 6, nr 21 (2018): 9882–92. http://dx.doi.org/10.1039/c7ta07176k.
Pełny tekst źródłaShan, Wenpo, Yang Geng, Yan Zhang, Zhihua Lian i Hong He. "A CeO2/ZrO2-TiO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3". Catalysts 8, nr 12 (30.11.2018): 592. http://dx.doi.org/10.3390/catal8120592.
Pełny tekst źródłaRevil, André, Zhaoyang Su, Zhongmin Zhu i Alexis Maineult. "Self-Potential as a Tool to Monitor Redox Reactions at an Ore Body: A Sandbox Experiment". Minerals 13, nr 6 (24.05.2023): 716. http://dx.doi.org/10.3390/min13060716.
Pełny tekst źródłaMa, Tianxiao, i Tianxiao Ma. "Measuring DNA Charge Transport on a Surface Using a Redox Modulated Fluorescence Intensity Strategy with DNA SAMs". ECS Meeting Abstracts MA2022-01, nr 55 (7.07.2022): 2323. http://dx.doi.org/10.1149/ma2022-01552323mtgabs.
Pełny tekst źródłaKirsch, R., A. C. Scheinost, A. Rossberg, D. Banerjee i L. Charlet. "Reduction of antimony by nano-particulate magnetite and mackinawite". Mineralogical Magazine 72, nr 1 (luty 2008): 185–89. http://dx.doi.org/10.1180/minmag.2008.072.1.185.
Pełny tekst źródłaAliotta, Chiara, Maria Costa, Leonarda Francesca Liotta, Valeria La Parola, Giuliana Magnacca i Francesca Deganello. "Peculiar Properties of the La0.25Ba0.25Sr0.5Co0.8Fe0.2O3−δ Perovskite as Oxygen Reduction Electrocatalyst". Molecules 28, nr 4 (8.02.2023): 1621. http://dx.doi.org/10.3390/molecules28041621.
Pełny tekst źródłaPoulain, Alexandre J., Sinéad M. Ní Chadhain, Parisa A. Ariya, Marc Amyot, Edenise Garcia, Peter G. C. Campbell, Gerben J. Zylstra i Tamar Barkay. "Potential for Mercury Reduction by Microbes in the High Arctic". Applied and Environmental Microbiology 73, nr 7 (9.02.2007): 2230–38. http://dx.doi.org/10.1128/aem.02701-06.
Pełny tekst źródłaZHEZHERYA, T. P., V. A. ZHEZHERYA i P. M. LYNNYK. "MIGRATION OF BIOGENIC ELEMENTS FROM BOTTOM SEDIMENTS AS AN ADDITIONAL INTERNAL LOAD OF NUTRIENTS ON THE WATER BODIES OF THE URBAN AREA". Hydrology, hydrochemistry and hydroecology, nr 3(65) (2022): 57–67. http://dx.doi.org/10.17721/2306-5680.2022.3.4.
Pełny tekst źródłaEllgaard, L. "Catalysis of disulphide bond formation in the endoplasmic reticulum". Biochemical Society Transactions 32, nr 5 (26.10.2004): 663–67. http://dx.doi.org/10.1042/bst0320663.
Pełny tekst źródła