Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Surface plasmon resonance imaging.

Artykuły w czasopismach na temat „Surface plasmon resonance imaging”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Surface plasmon resonance imaging”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Steiner, Gerald. "Surface plasmon resonance imaging". Analytical and Bioanalytical Chemistry 379, nr 3 (1.06.2004): 328–31. http://dx.doi.org/10.1007/s00216-004-2636-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Thariani, Rahber, i Paul Yager. "Imaging of Surfaces by Concurrent Surface Plasmon Resonance and Surface Plasmon Resonance-Enhanced Fluorescence". PLoS ONE 5, nr 3 (25.03.2010): e9833. http://dx.doi.org/10.1371/journal.pone.0009833.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Notcovich, Ariel G., V. Zhuk i S. G. Lipson. "Surface plasmon resonance phase imaging". Applied Physics Letters 76, nr 13 (27.03.2000): 1665–67. http://dx.doi.org/10.1063/1.126129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chakra, Oussama Abou, Nathalie Vollmer, Souhir Boujday, Pascal Poncet, Hélène Chardin, Gabriel Peltre, Claire-Marie Pradier i Hélène Sénéchal. "497 Surface Plasmon Resonance Imaging". World Allergy Organization Journal 5 (luty 2012): S158. http://dx.doi.org/10.1097/01.wox.0000411612.58056.42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Xu, Liang, Hongwei Wang i Wenhui Si. "Surface Plasmon Resonance Sterilization 3D Imaging Technology Considering the Engineering Hue Algorithm". Mobile Information Systems 2022 (20.04.2022): 1–11. http://dx.doi.org/10.1155/2022/3623963.

Pełny tekst źródła
Streszczenie:
The high-resolution dynamic observation of the phenomenon of impossible surface plasmon resonance sterilization is conducted which resulted from the quality problems in the imaging process of traditional surface plasmon resonance sterilization 3D imaging technology. Surface plasmon resonance (SPR) technology is mainly based on the physical-optical properties generated by the optical coupling of metal thin films, and flexible optical analysis methods are used to improve the quality and efficiency of SPR sterilization 3D imaging. In this paper, the engineering hue algorithm is introduced into the 3D imaging process of surface plasmon resonance sterilization, and the front-end imaging system composed of the objective lens, distributed elements, focusing mirrors, and probes is used to obtain the corresponding surface plasmon resonance sterilization spectrum data on the back-end processor and quickly send the imaging calculation amount from the front-end to the back-end. Meanwhile, combined with 3D imaging, dislocation data processing technology, and multiframe reconstruction method, the reconstruction accuracy is improved, and memory space is released to speed up data processing. Finally, the experimental analysis shows that the engineering hue algorithm is used in the process of surface plasmon resonance sterilization 3D imaging, which can complete the superresolution plasmon resonance sterilization 3D imaging, and the obtained imaging effect is good, the data processing speed is fast, and it can be observed in surface plasmon resonance sterilization imaging with wide amplitude, high resolution, and low power consumption.
Style APA, Harvard, Vancouver, ISO itp.
6

Tontarawongsa, Sorawit, Sarinporn Visitsattapongse i Suejit Pechprasarn. "Performance Analysis of Non-Interferometry Based Surface Plasmon Resonance Microscopes". Sensors 21, nr 15 (2.08.2021): 5230. http://dx.doi.org/10.3390/s21155230.

Pełny tekst źródła
Streszczenie:
Surface plasmon microscopy has been of interest to the science and engineering community and has been utilized in broad aspects of applications and studies, including biochemical sensing and biomolecular binding kinetics. The benefits of surface plasmon microscopy include label-free detection, high sensitivity, and quantitative measurements. Here, a theoretical framework to analyze and compare several non-interferometric surface plasmon microscopes is proposed. The scope of the study is to (1) identify the strengths and weaknesses in each surface plasmon microscopes reported in the literature; (2) quantify their performance in terms of spatial imaging resolution, imaging contrast, sensitivity, and measurement accuracy for quantitative and non-quantitative imaging modes of the microscopes. Six types of non-interferometric microscopes were included in this study: annulus aperture scanning, half annulus aperture scanning, single-point scanning, double-point scanning, single-point scanning, at 45 degrees azimuthal angle, and double-point scanning at 45 degrees azimuthal angle. For non-quantitative imaging, there is a substantial tradeoff between the image contrast and the spatial resolution. For the quantitative imaging, the half annulus aperture provided the highest sensitivity of 127.058 rad/μm2 RIU−1, followed by the full annulus aperture of 126.318 rad/μm2 RIU−1. There is a clear tradeoff between spatial resolution and sensitivity. The annulus aperture and half annulus aperture had an optimal resolution, sensitivity, and crosstalk compared to the other non-interferometric surface plasmon resonance microscopes. The resolution depends strongly on the propagation length of the surface plasmons rather than the numerical aperture of the objective lens. For imaging and sensing purposes, the recommended microfluidic channel size and protein stamping size for surface plasmon resonance experiments is at least 25 μm for accurate plasmonic measurements.
Style APA, Harvard, Vancouver, ISO itp.
7

Duval, Aurélien, Aude Laisné, Denis Pompon, Sylvain Held, Alain Bellemain, Julien Moreau i Michael Canva. "Polarimetric surface plasmon resonance imaging biosensor". Optics Letters 34, nr 23 (19.11.2009): 3634. http://dx.doi.org/10.1364/ol.34.003634.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Paul, S., P. Vadgama i A. K. Ray. "Surface plasmon resonance imaging for biosensing". IET Nanobiotechnology 3, nr 3 (2009): 71. http://dx.doi.org/10.1049/iet-nbt.2008.0012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Spoto, Giuseppe, i Maria Minunni. "Surface Plasmon Resonance Imaging: What Next?" Journal of Physical Chemistry Letters 3, nr 18 (10.09.2012): 2682–91. http://dx.doi.org/10.1021/jz301053n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Otsuki, Soichi, Kaoru Tamada i S. Wakida. "Wavelength-scanning surface plasmon resonance imaging". Applied Optics 44, nr 17 (10.06.2005): 3468. http://dx.doi.org/10.1364/ao.44.003468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Guo, Haomin, Qi Hu, Chengyun Zhang, Haiwen Liu, Runmin Wu i Shusheng Pan. "Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity". Materials 16, nr 4 (9.02.2023): 1453. http://dx.doi.org/10.3390/ma16041453.

Pełny tekst źródła
Streszczenie:
The surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) can be used to enhance the generation of the hot electrons in plasmon metal nanocavity. In this paper, Pd nanomembrane (NMB) is sputtered on the surface of Si nanosphere (NS) on glass substrate to form the Si@Pd core-Ω shell nanocavity. A plasmon-Mie resonance is induced in the nanocavity by coupling the plasmon resonance with the Mie resonance to control the optical property of Si NS. When this nanocavity is excited by near-infrared-1 (NIR-1, 650 nm–900 nm) femtosecond (fs) laser, the luminescence intensity of Si NS is dramatically enhanced due to the synergistic interaction of plasmon and Mie resonance. The generation of resonance coupling regulates resonant mode of the nanocavity to realize multi-dimensional nonlinear optical response, which can be utilized in the fields of biological imaging and nanoscale light source.
Style APA, Harvard, Vancouver, ISO itp.
12

HORING, NORMAN J. MORGENSTERN, i H. L. CUI. "SURFACE-PLASMON-RESONANCE BASED OPTICAL SENSING". International Journal of High Speed Electronics and Systems 18, nr 01 (marzec 2008): 71–78. http://dx.doi.org/10.1142/s012915640800514x.

Pełny tekst źródła
Streszczenie:
Over the past twenty years, surface plasmon resonance has been developed as an effective technique for use in real-time biotechnological measurements of the kinetics of label-free biomolecular interactions with high sensitivity.1-16 On a fundamental level, it is the dielectric-imaging involvement of the adsorbed biomolecular layer (DNA for example) in shifting the surface plasmon resonance (SPR) frequency by means of electrostatic coupling at the interface with the metal film substrate that facilitates SPR-based optical sensing. Of course, there are various factors that can influence surface plasmon resonance, including plasma nonlocality, phonons, multiplicity of layers, all of which should be carefully examined. Moreover, tunable SPR phenomenology based on the role of a magnetic field (both classically and quantum mechanically) merits consideration in regard to the field's effects on both the substrate17 and the adsorbed layer(s).18 This paper is focused on the establishment of the basic equations governing surface plasmon resonance, incorporating all the features cited above. In it, we present the formulation and closed-form analytical solution for the dynamic, nonlocal screening function of a thick substrate material with a thin external adsorbed layer, which can be extended to multiple layers. The result involves solution of the random phase approximation (RPA) integral equation for the spatially inhomogeneous system of the substrate and adsorbed layer,19-25 given the individual polarizabilities of the thick substrate and the layer. (This is tantamount to the space-time matrix inversion of the inhomogeneous joint dielectric function of the system.) The frequency poles of the resulting screening function determine the shifted surface (and bulk) plasmon resonances and the associated residues at the resonance frequencies provide their relative excitation amplitudes. The latter represent the response strengths of the surface plasmon resonances (oscillator strengths), and will be of interest in optimizing the materials to be employed.
Style APA, Harvard, Vancouver, ISO itp.
13

Wilde, J. N., M. C. Petty, J. Saffell, A. Tempore i L. Valli. "Surface Plasmon Resonance Imaging for Gas Sensing". Measurement and Control 30, nr 9 (listopad 1997): 269–72. http://dx.doi.org/10.1177/002029409703000903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Le, Yonghong He, Ying Zhang, Suihua Ma, Hui Ma i Jihua Guo. "Parallel scan spectral surface plasmon resonance imaging". Applied Optics 47, nr 30 (15.10.2008): 5616. http://dx.doi.org/10.1364/ao.47.005616.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Lyon, L. Andrew, William D. Holliway i Michael J. Natan. "An improved surface plasmon resonance imaging apparatus". Review of Scientific Instruments 70, nr 4 (kwiecień 1999): 2076–81. http://dx.doi.org/10.1063/1.1149716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Wong, Chi Lok, i Malini Olivo. "Surface Plasmon Resonance Imaging Sensors: A Review". Plasmonics 9, nr 4 (21.02.2014): 809–24. http://dx.doi.org/10.1007/s11468-013-9662-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Steiner, G., V. Sablinskas, A. Hübner, Ch Kuhne i R. Salzer. "Surface plasmon resonance imaging of microstructured monolayers". Journal of Molecular Structure 509, nr 1-3 (październik 1999): 265–73. http://dx.doi.org/10.1016/s0022-2860(99)00226-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Lee, Ju-Yi, Teng-Ko Chou i Hsueh-Ching Shih. "Polarization-interferometric surface-plasmon-resonance imaging system". Optics Letters 33, nr 5 (20.02.2008): 434. http://dx.doi.org/10.1364/ol.33.000434.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ouellet, Eric, Christopher Lausted, Tao Lin, Cheng Wei T. Yang, Leroy Hood i Eric T. Lagally. "Parallel microfluidic surface plasmon resonance imaging arrays". Lab on a Chip 10, nr 5 (2010): 581. http://dx.doi.org/10.1039/b920589f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Howe, Carmel L., Kevin F. Webb, Sidahmed A. Abayzeed, David J. Anderson, Chris Denning i Noah A. Russell. "Surface plasmon resonance imaging of excitable cells". Journal of Physics D: Applied Physics 52, nr 10 (4.01.2019): 104001. http://dx.doi.org/10.1088/1361-6463/aaf849.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Nakkach, Mohamed, Aurélien Duval, Buntha Ea-Kim, Julien Moreau i Michael Canva. "Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces". Optics Letters 35, nr 13 (23.06.2010): 2209. http://dx.doi.org/10.1364/ol.35.002209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Abadian, Pegah N., i Edgar D. Goluch. "Surface plasmon resonance imaging (SPRi) for multiplexed evaluation of bacterial adhesion onto surface coatings". Analytical Methods 7, nr 1 (2015): 115–22. http://dx.doi.org/10.1039/c4ay02094d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Huang, Songfeng, Jiajie Chen, Teliang Zhang, Xiaoqi Dai, Xueliang Wang, Jianxing Zhou, Weifu Kong, Qian Liu, Junle Qu i Yonghong Shao. "Recent Advances in Surface Plasmon Resonance Microscopy". Chemosensors 10, nr 12 (30.11.2022): 509. http://dx.doi.org/10.3390/chemosensors10120509.

Pełny tekst źródła
Streszczenie:
Surface plasmon resonance microscopy (SPRM) is a versatile technique for biosensing and imaging that facilitates high-sensitivity, label-free, real-time characterization. To date, SPR technology has been successfully commercialized and its performance has continued to improve. However, this method is inhibited by low spatial resolution and the inability to achieve single-molecule detection. In this report, we present an overview of SPRM research progress in the field of plasma imaging and sensing. A brief review of the technological advances in SPRM is outlined, as well as research progress in important applications. The combination of various new techniques with SPRM is emphasized. Finally, the current challenges and outlook of this technique are discussed.
Style APA, Harvard, Vancouver, ISO itp.
24

GAO Laixu, 高来勖, 李松权 LI Songquan, 叶红安 YE Hongan, 书钢 LIU Shugang, 蒋式弘 JIANG Shihong, 柳春郁 LIU Chunyu i 安旭 AN Xu. "Surface Plasmon Resonance Imaging Based on Slit Scanning". ACTA PHOTONICA SINICA 43, nr 6 (2014): 611001. http://dx.doi.org/10.3788/gzxb20144306.0611001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wang, Dongping, Jacky Loo, Jiajie Chen, Yeung Yam, Shih-Chi Chen, Hao He, Siu Kong i Ho Ho. "Recent Advances in Surface Plasmon Resonance Imaging Sensors". Sensors 19, nr 6 (13.03.2019): 1266. http://dx.doi.org/10.3390/s19061266.

Pełny tekst źródła
Streszczenie:
The surface plasmon resonance (SPR) sensor is an important tool widely used for studying binding kinetics between biomolecular species. The SPR approach offers unique advantages in light of its real-time and label-free sensing capabilities. Until now, nearly all established SPR instrumentation schemes are based on single- or several-channel configurations. With the emergence of drug screening and investigation of biomolecular interactions on a massive scale these days for finding more effective treatments of diseases, there is a growing demand for the development of high-throughput 2-D SPR sensor arrays based on imaging. The so-called SPR imaging (SPRi) approach has been explored intensively in recent years. This review aims to provide an up-to-date and concise summary of recent advances in SPRi. The specific focuses are on practical instrumentation designs and their respective biosensing applications in relation to molecular sensing, healthcare testing, and environmental screening.
Style APA, Harvard, Vancouver, ISO itp.
26

Lausted, Christopher, Zhiyuan Hu i Leroy Hood. "Quantitative Serum Proteomics from Surface Plasmon Resonance Imaging". Molecular & Cellular Proteomics 7, nr 12 (3.08.2008): 2464–74. http://dx.doi.org/10.1074/mcp.m800121-mcp200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Shan, X., U. Patel, S. Wang, R. Iglesias i N. Tao. "Imaging Local Electrochemical Current via Surface Plasmon Resonance". Science 327, nr 5971 (11.03.2010): 1363–66. http://dx.doi.org/10.1126/science.1186476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Patskovsky, S., M. Meunier i A. V. Kabashin. "Surface plasmon resonance polarizator for biosensing and imaging". Optics Communications 281, nr 21 (listopad 2008): 5492–96. http://dx.doi.org/10.1016/j.optcom.2008.07.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kato, Koichi, Toshinari Ishimuro, Yusuke Arima, Isao Hirata i Hiroo Iwata. "High-Throughput Immunophenotyping by Surface Plasmon Resonance Imaging". Analytical Chemistry 79, nr 22 (listopad 2007): 8616–23. http://dx.doi.org/10.1021/ac071548s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Mandracchia, B., V. Pagliarulo, M. Paturzo i P. Ferraro. "Surface Plasmon Resonance Imaging by Holographic Enhanced Mapping". Analytical Chemistry 87, nr 8 (9.04.2015): 4124–28. http://dx.doi.org/10.1021/acs.analchem.5b00095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Chinowsky, Timothy M., Michael S. Grow, Kyle S. Johnston, Kjell Nelson, Thayne Edwards, Elain Fu i Paul Yager. "Compact, high performance surface plasmon resonance imaging system". Biosensors and Bioelectronics 22, nr 9-10 (kwiecień 2007): 2208–15. http://dx.doi.org/10.1016/j.bios.2006.10.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Scarano, Simona, Marco Mascini, Anthony P. F. Turner i Maria Minunni. "Surface plasmon resonance imaging for affinity-based biosensors". Biosensors and Bioelectronics 25, nr 5 (15.01.2010): 957–66. http://dx.doi.org/10.1016/j.bios.2009.08.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Grigorenko, A. N., P. I. Nikitin i A. V. Kabashin. "Phase jumps and interferometric surface plasmon resonance imaging". Applied Physics Letters 75, nr 25 (20.12.1999): 3917–19. http://dx.doi.org/10.1063/1.125493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Vander, R., i S. G. Lipson. "High-resolution surface-plasmon resonance real-time imaging". Optics Letters 34, nr 1 (23.12.2008): 37. http://dx.doi.org/10.1364/ol.34.000037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Liu, Wei, Yi Chen i Mingdi Yan. "Surface plasmon resonance imaging of limited glycoprotein samples". Analyst 133, nr 9 (2008): 1268. http://dx.doi.org/10.1039/b804235g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

D’Agata, Roberta, i Giuseppe Spoto. "Surface plasmon resonance imaging for nucleic acid detection". Analytical and Bioanalytical Chemistry 405, nr 2-3 (28.11.2012): 573–84. http://dx.doi.org/10.1007/s00216-012-6563-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Filippini, Daniel, Fredrik Winquist i Ingemar Lundström. "Computer screen photo-excited surface plasmon resonance imaging". Analytica Chimica Acta 625, nr 2 (wrzesień 2008): 207–14. http://dx.doi.org/10.1016/j.aca.2008.07.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Stojanović, Ivan, Richard B. M. Schasfoort i Leon W. M. M. Terstappen. "Analysis of cell surface antigens by Surface Plasmon Resonance imaging". Biosensors and Bioelectronics 52 (luty 2014): 36–43. http://dx.doi.org/10.1016/j.bios.2013.08.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Gu, Qiong Chan, Xiao Xiao Jiang, Jiang Tao Lv i Guang Yuan Si. "Enhanced Coupling Effect between Plasmonic and Dielectric Nanocylinders". Advanced Materials Research 1049-1050 (październik 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.3.

Pełny tekst źródła
Streszczenie:
Surface plasmons have been used to enhance the surface sensitivity of several spectroscopic measurements including fluorescence, Raman scattering, and second harmonic generation. However, in their simplest form, SPR reflectivity measurements can be used to detect proteins by the changes in the local index of refraction upon adsorption of the target molecule to the metal surface. If the surface is patterned with different biopolymers, the technique is called Surface Plasmon Resonance Imaging (SPRI).
Style APA, Harvard, Vancouver, ISO itp.
40

Lertvachirapaiboon, Chutiparn, Akira Baba, Sanong Ekgasit, Kazunari Shinbo, Keizo Kato i Futao Kaneko. "Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure". Sensors and Actuators B: Chemical 249 (październik 2017): 39–43. http://dx.doi.org/10.1016/j.snb.2017.04.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

FAN Zhi-bo, 范智博, 龚晓庆 GONG Xiao-qing, 逯丹凤 LU Dan-feng, 高. 然. GAO Ran, 邓耀华 DENG Yao-hua i 祁志美 QI Zhi-mei. "Surface plasmon resonance imaging sensor based on hue algorithm". Chinese Journal of Liquid Crystals and Displays 32, nr 5 (2017): 402–9. http://dx.doi.org/10.3788/yjyxs20173205.0402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wang Yijia, 王弋嘉, 张崇磊 Zhang Chonglei, 王蓉 Wang Rong, 朱思伟 Zhu Siwei i 袁小聪 Yuan Xiaocong. "Extracting Phase Information of Surface Plasmon Resonance Imaging System". Acta Optica Sinica 33, nr 5 (2013): 0524001. http://dx.doi.org/10.3788/aos201333.0524001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Abadian, Pegah N., Nil Tandogan, John J. Jamieson i Edgar D. Goluch. "Using surface plasmon resonance imaging to study bacterial biofilms". Biomicrofluidics 8, nr 2 (marzec 2014): 021804. http://dx.doi.org/10.1063/1.4867739.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wilkop, Thomas, N. Manivannan, W. Balachandran i Asim K. Ray. "Surface Plasmon Resonance for Human Bone Marrow Cells Imaging". IEEE Sensors Journal 20, nr 19 (1.10.2020): 11625–31. http://dx.doi.org/10.1109/jsen.2020.2997742.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Huang, Dexiu. "Fiber optic surface plasmon resonance sensors for imaging systems". Optical Engineering 46, nr 5 (1.05.2007): 054403. http://dx.doi.org/10.1117/1.2736302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Morrill, Paul R., R. B. Millington i Christopher R. Lowe. "Imaging surface plasmon resonance system for screening affinity ligands". Journal of Chromatography B 793, nr 2 (sierpień 2003): 229–51. http://dx.doi.org/10.1016/s1570-0232(03)00282-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Wark, Alastair W., Hye Jin Lee i Robert M. Corn. "Long-Range Surface Plasmon Resonance Imaging for Bioaffinity Sensors". Analytical Chemistry 77, nr 13 (lipiec 2005): 3904–7. http://dx.doi.org/10.1021/ac050402v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Maurat, E., P.-A. Hervieux i F. Lépine. "Surface plasmon resonance in C60revealed by photoelectron imaging spectroscopy". Journal of Physics B: Atomic, Molecular and Optical Physics 42, nr 16 (27.07.2009): 165105. http://dx.doi.org/10.1088/0953-4075/42/16/165105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Ma, Teng-Fei, You-Peng Chen, Jin-Song Guo, Wei Wang i Fang Fang. "Cellular analysis and detection using surface plasmon resonance imaging". TrAC Trends in Analytical Chemistry 103 (czerwiec 2018): 102–9. http://dx.doi.org/10.1016/j.trac.2018.03.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Boecker, Daniel, Alexander Zybin, Vlasta Horvatic, Christian Grunwald i Kay Niemax. "Differential Surface Plasmon Resonance Imaging for High-Throughput Bioanalyses". Analytical Chemistry 79, nr 2 (styczeń 2007): 702–9. http://dx.doi.org/10.1021/ac061623j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii