Artykuły w czasopismach na temat „Surface-enhanced Raman spectroscopy”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Surface-enhanced Raman spectroscopy.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Surface-enhanced Raman spectroscopy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

NISHINO, Tomoaki. "Surface-enhanced Raman Spectroscopy". Analytical Sciences 34, nr 9 (10.09.2018): 1061–62. http://dx.doi.org/10.2116/analsci.highlights1809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Stiles, Paul L., Jon A. Dieringer, Nilam C. Shah i Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy". Annual Review of Analytical Chemistry 1, nr 1 (lipiec 2008): 601–26. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Haynes, Christy L., Adam D. McFarland i Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy". Analytical Chemistry 77, nr 17 (wrzesień 2005): 338 A—346 A. http://dx.doi.org/10.1021/ac053456d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Garrell, Robin L. "Surface-enhanced Raman spectroscopy". Analytical Chemistry 61, nr 6 (15.03.1989): 401A—411A. http://dx.doi.org/10.1021/ac00181a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sur, Ujjal Kumar. "Surface-enhanced Raman spectroscopy". Resonance 15, nr 2 (luty 2010): 154–64. http://dx.doi.org/10.1007/s12045-010-0016-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Popp, Jürgen, i Thomas Mayerhöfer. "Surface-enhanced Raman spectroscopy". Analytical and Bioanalytical Chemistry 394, nr 7 (10.06.2009): 1717–18. http://dx.doi.org/10.1007/s00216-009-2864-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bell, Steven E. J., i Narayana M. S. Sirimuthu. "Quantitative surface-enhanced Raman spectroscopy". Chemical Society Reviews 37, nr 5 (2008): 1012. http://dx.doi.org/10.1039/b705965p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Nie, Shuming, Leigh Ann Lipscomb i Nai-Teng Yu. "Surface-Enhanced Hyper-Raman Spectroscopy". Applied Spectroscopy Reviews 26, nr 3 (wrzesień 1991): 203–76. http://dx.doi.org/10.1080/05704929108050881.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Keller, Emily L., Nathaniel C. Brandt, Alyssa A. Cassabaum i Renee R. Frontiera. "Ultrafast surface-enhanced Raman spectroscopy". Analyst 140, nr 15 (2015): 4922–31. http://dx.doi.org/10.1039/c5an00869g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kudelski, Andrzej. "Nanomaterials for Surface Enhanced Raman Spectroscopy". Nanomaterials 13, nr 3 (18.01.2023): 402. http://dx.doi.org/10.3390/nano13030402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Shupeng Liu, Shupeng Liu, Lianxin Li Lianxin Li, Zhenyi Chen Zhenyi Chen, Na Chen Na Chen, Zhangmin Dai Zhangmin Dai, Jing Huang Jing Huang i Bo Lu Bo Lu. "Surface-enhanced Raman spectroscopy measurement of cancerous cells with optical fiber sensor". Chinese Optics Letters 12, s1 (2014): S13001–313003. http://dx.doi.org/10.3788/col201412.s13001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Qiu, Yuxuan, Cuifang Kuang, Xu Liu i Longhua Tang. "Single-Molecule Surface-Enhanced Raman Spectroscopy". Sensors 22, nr 13 (29.06.2022): 4889. http://dx.doi.org/10.3390/s22134889.

Pełny tekst źródła
Streszczenie:
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.
Style APA, Harvard, Vancouver, ISO itp.
13

Le Ru, Eric C., i Pablo G. Etchegoin. "Single-Molecule Surface-Enhanced Raman Spectroscopy". Annual Review of Physical Chemistry 63, nr 1 (5.05.2012): 65–87. http://dx.doi.org/10.1146/annurev-physchem-032511-143757.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Frontiera, Renee R., Anne-Isabelle Henry, Natalie L. Gruenke i Richard P. Van Duyne. "Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy". Journal of Physical Chemistry Letters 2, nr 10 (29.04.2011): 1199–203. http://dx.doi.org/10.1021/jz200498z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Barhoumi, Aoune, Dongmao Zhang, Felicia Tam i Naomi J. Halas. "Surface-Enhanced Raman Spectroscopy of DNA". Journal of the American Chemical Society 130, nr 16 (kwiecień 2008): 5523–29. http://dx.doi.org/10.1021/ja800023j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tian, Z. Q., W. H. Li, B. W. Mao, S. Z. Zou i J. S. Gao. "Potential-Averaged Surface-Enhanced Raman Spectroscopy". Applied Spectroscopy 50, nr 12 (grudzień 1996): 1569–77. http://dx.doi.org/10.1366/0003702963904575.

Pełny tekst źródła
Streszczenie:
This paper describes a novel technique called potential-averaged surface-enhanced Raman spectroscopy (PASERS) which has several advantages over SERS. A PASERS spectrum is acquired when the electrode is rapidly modulated between two potentials by applying a square-wave voltage. The potential-averaged SERS spectrum contains all the information on the surface species at the two modulated potentials, and each individual SERS spectrum can then be extracted by deconvolution. By properly choosing the two modulating potentials, one can obtain SERS spectra of surface species at electrode potentials where SERS-active sites are normally unstable. PASERS also leads to a unique way of studying complex interfacial kinetic processes by controlling the voltage pulse height, frequency, and shape. Moreover, the measurement of time-resolved spectra in the very low vibrational frequency region can be achieved by PASERS with the use of a conventional scanning spectrometer with a single-channel detector. In this paper, the main advantages of PASERS are illustrated by studying two typical SERS systems, i.e., thiocyanate ion and thiourea adsorbed at silver electrodes, respectively. It is shown that the potential-averaging method can be applied as a common method to many other existing spectroelectrochemical techniques.
Style APA, Harvard, Vancouver, ISO itp.
17

Schedin, Fred, Elefterios Lidorikis, Antonio Lombardo, Vasyl G. Kravets, Andre K. Geim, Alexander N. Grigorenko, Kostya S. Novoselov i Andrea C. Ferrari. "Surface-Enhanced Raman Spectroscopy of Graphene". ACS Nano 4, nr 10 (21.09.2010): 5617–26. http://dx.doi.org/10.1021/nn1010842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Xiong, Min, i Jian Ye. "Reproducibility in surface-enhanced Raman spectroscopy". Journal of Shanghai Jiaotong University (Science) 19, nr 6 (30.11.2014): 681–90. http://dx.doi.org/10.1007/s12204-014-1566-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Abu-Hatab, Nahla A., Joshy F. John, Jenny M. Oran i Michael J. Sepaniak. "Multiplexed Microfluidic Surface-Enhanced Raman Spectroscopy". Applied Spectroscopy 61, nr 10 (październik 2007): 1116–22. http://dx.doi.org/10.1366/000370207782217842.

Pełny tekst źródła
Streszczenie:
Over the past few decades, surface-enhanced Raman spectroscopy (SERS) has garnered respect as an analytical technique with significant chemical and biological applications. SERS is important for the life sciences because it can provide trace level detection, a high level of structural information, and enhanced chemical detection. However, creating and successfully implementing a sensitive, reproducible, and robust SERS active substrate continues to be a challenging task. Herein, we report a novel method for SERS that is based upon using multiplexed microfluidics (MMFs) in a polydimethylsiloxane platform to perform parallel, high throughput, and sensitive detection/identification of single or various analytes under easily manipulated conditions. A facile passive pumping method is used to deliver Ag colloids and analytes into the channels where SERS measurements are done under nondestructive flowing conditions. With this approach, SERS signal reproducibility is found to be better than 7%. Utilizing a very high numerical aperture microscope objective with a confocal-based Raman spectrometer, high sensitivity is achieved. Moreover, the long working distance of this objective coupled with an appreciable channel depth obviates normal alignment issues expected with translational multiplexing. Rapid evaluation of the effects of anion activators and the type of colloid employed on SERS performance are used to demonstrate the efficiency and applicability of the MMF approach. SERS spectra of various pesticides were also obtained. Calibration curves of crystal violet (non-resonant enhanced) and Mitoxantrone (resonant enhanced) were generated, and the major SERS bands of these analytes were observable down to concentrations in the low nM and sub-pM ranges, respectively. While conventional random morphology colloids were used in most of these studies, unique cubic nanoparticles of silver were synthesized with different sizes and studied using visible wavelength optical extinction spectrometry, scanning electron microscopy, and the MMF-SERS approach.
Style APA, Harvard, Vancouver, ISO itp.
20

Toscano, G., S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi i N. A. Mortensen. "Surface-enhanced Raman spectroscopy: nonlocal limitations". Optics Letters 37, nr 13 (21.06.2012): 2538. http://dx.doi.org/10.1364/ol.37.002538.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Rohr, Thomas E., Therese Cotton, Ni Fan i Peter J. Tarcha. "Immunoassay employing surface-enhanced Raman spectroscopy". Analytical Biochemistry 182, nr 2 (listopad 1989): 388–98. http://dx.doi.org/10.1016/0003-2697(89)90613-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Hu, Jun, Rong Sheng Sheng, Zhi San Xu i Yun'e Zeng. "Surface enhanced Raman spectroscopy of lysozyme". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 51, nr 6 (czerwiec 1995): 1087–96. http://dx.doi.org/10.1016/0584-8539(94)00225-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zhang, Lu, Chao Meng, Hao Yang i Wending Zhang. "Azimuthal vector beam illuminating plasmonic tips circular cluster for surface-enhanced Raman spectroscopy". Chinese Optics Letters 21, nr 3 (2023): 033603. http://dx.doi.org/10.3788/col202321.033603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

D’Acunto, Mario. "Surface Enhanced Raman Spectroscopy and Intracellular Components". Proceedings 27, nr 1 (20.09.2019): 14. http://dx.doi.org/10.3390/proceedings2019027014.

Pełny tekst źródła
Streszczenie:
In the last decade, surface-enhanced Raman spectroscopy (SERS) met increasing interest in the detection of chemical and biological agents due to its rapid performance and ultra-sensitive features. SERS is a combination of Raman spectroscopy and nanotechnology; it includes the advantages of Raman spectroscopy, providing rapid spectra collection, small sample sizes, and characteristic spectral fingerprints for specific analytes. In this paper, we detected label-free SERS signals for arbitrarily configurations of dimers, trimers, etc., composed of gold nanoshells (AuNSs) and applied to the mapping of osteosarcoma intracellular components.
Style APA, Harvard, Vancouver, ISO itp.
25

PETTINGER, Bruno, Gennaro PICARDI, Rolf SCHUSTER i Gerhard ERTL. "Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy". Electrochemistry 68, nr 12 (5.12.2000): 942–49. http://dx.doi.org/10.5796/electrochemistry.68.942.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Sinha, Rajeev K. "An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy". Instruments and Experimental Techniques 64, nr 6 (listopad 2021): 840–47. http://dx.doi.org/10.1134/s002044122106018x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Vo-Dinh, T., i D. L. Stokes. "Surface-Enhanced Raman Vapor Dosimeter". Applied Spectroscopy 47, nr 10 (październik 1993): 1728–32. http://dx.doi.org/10.1366/0003702934334679.

Pełny tekst źródła
Streszczenie:
This paper describes a new direct-reading personal dosimeter designed to detect vapors of organic chemicals. The device employs the surface-enhanced Raman scattering (SERS) technique for direct measurement of the amount of analyte collected on the dosimeter, requiring no sample desorption or wet-chemical extraction procedure. The time-weighted average exposure to the chemical vapors can be determined on the dosimeter substrate. The results with benzoic acid used as the model compound illustrate the usefulness of this SERS-based dosimeter.
Style APA, Harvard, Vancouver, ISO itp.
28

Panneerselvam, Rajapandiyan, Guo-Kun Liu, Yao-Hui Wang, Jun-Yang Liu, Song-Yuan Ding, Jian-Feng Li, De-Yin Wu i Zhong-Qun Tian. "Surface-enhanced Raman spectroscopy: bottlenecks and future directions". Chemical Communications 54, nr 1 (2018): 10–25. http://dx.doi.org/10.1039/c7cc05979e.

Pełny tekst źródła
Streszczenie:
This feature article discusses developmental bottleneck issues in surface Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades and future perspectives.
Style APA, Harvard, Vancouver, ISO itp.
29

Sánchez-Cortés, S., M. Vasina, O. Francioso i J. V. Garcı́a-Ramos. "Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides". Vibrational Spectroscopy 17, nr 2 (wrzesień 1998): 133–44. http://dx.doi.org/10.1016/s0924-2031(98)00025-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Leopold, N., J. R. Baena, M. Bolboacǎ, O. Cozar, W. Kiefer i B. Lendl. "Raman, IR, and surface-enhanced Raman spectroscopy of papaverine". Vibrational Spectroscopy 36, nr 1 (październik 2004): 47–55. http://dx.doi.org/10.1016/j.vibspec.2004.02.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Matsukovich, A. S., E. V. Shabunya-Klyachkovskaya, M. Sawczak, K. Grochowska, D. Maskowicz i G. Śliwiński. "Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy". International Journal of Nanoscience 18, nr 03n04 (czerwiec 2019): 1940069. http://dx.doi.org/10.1142/s0219581x19400696.

Pełny tekst źródła
Streszczenie:
This work shows comparative analysis of surface-enhanced Raman scattering (SERS) activity of gold nanoparticles fabricated by chemical synthesis and laser ablation methods. The gold nanoparticles prepared by laser ablation (Au-LA) are more effective for SERS than those prepared chemically (Au-citr). The “analyte on Au film” configuration allows obtaining enhancement of Raman scattering up to 104 in case of Au-LA nanoparticles and up to 102 in case of Au-citr. Also the “sandwich” configuration for Au-LA gives additional enhancement of SERS up to two times, and for Au-citr up to one order, that is consistent with theoretical calculations.
Style APA, Harvard, Vancouver, ISO itp.
32

Gruenke, Natalie L., M. Fernanda Cardinal, Michael O. McAnally, Renee R. Frontiera, George C. Schatz i Richard P. Van Duyne. "Ultrafast and nonlinear surface-enhanced Raman spectroscopy". Chemical Society Reviews 45, nr 8 (2016): 2263–90. http://dx.doi.org/10.1039/c5cs00763a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Feng Shangyuan, 冯尚源, 陈荣 Chen Rong, 李永增 Li Yongzeng, 陈冠楠 Chen Guannan, 林居强 Lin Juqiang, 林文硕 Lin Wenshuo, 陈伟炜 Chen Weiwei, 陈杰斯 Chen Jiesi i 俞允 Yu Yun. "Surface-Enhanced Raman Spectroscopy of Dangshen Decoction". Chinese Journal of Lasers 37, nr 1 (2010): 121–24. http://dx.doi.org/10.3788/cjl20103701.0121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Meheretu, Getnet Melese, Dana Cialla i J. Popp. "Surface Enhanced Raman Spectroscopy on Silver Nanoparticles". International Journal of Biochemistry and Biophysics 2, nr 4 (październik 2014): 63–67. http://dx.doi.org/10.13189/ijbb.2014.020403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zhang Ming, 张. 明., 朱绍玲 Zhu Shaoling, 高. 飞. Gao Fei i 罗. 果. Luo Guo. "Breast cancer oxyhemoglobin surface enhanced Raman spectroscopy". Infrared and Laser Engineering 46, nr 4 (2017): 433001. http://dx.doi.org/10.3788/irla201746.0433001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Wu, De-Yin, Jian-Feng Li, Bin Ren i Zhong-Qun Tian. "Electrochemical surface-enhanced Raman spectroscopy of nanostructures". Chemical Society Reviews 37, nr 5 (2008): 1025. http://dx.doi.org/10.1039/b707872m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ding, Song-Yuan, En-Ming You, Zhong-Qun Tian i Martin Moskovits. "Electromagnetic theories of surface-enhanced Raman spectroscopy". Chemical Society Reviews 46, nr 13 (2017): 4042–76. http://dx.doi.org/10.1039/c7cs00238f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Alvarez-Puebla, Ramo´n A., Xing Yi Ling, Patrizio Candeloro i Marc Lamy de la Chapelle. "Special issue on surface-enhanced Raman spectroscopy". Journal of Optics 17, nr 11 (23.10.2015): 110201. http://dx.doi.org/10.1088/2040-8978/17/11/110201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Ran An, 安冉, 欧全宏 Quanhong Ou, 刘刚 Gang Liu, 杨卫梅 Weimei Yang, 符致秋 Zhiqiu Fu, 李建美 Jianmei Li i 时有明 Youming Shi. "Surface-Enhanced Raman Spectroscopy of Mushroom Spores". Laser & Optoelectronics Progress 56, nr 15 (2019): 153001. http://dx.doi.org/10.3788/lop56.153001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

McFarland, Adam D., Matthew A. Young, Jon A. Dieringer i Richard P. Van Duyne. "Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy". Journal of Physical Chemistry B 109, nr 22 (czerwiec 2005): 11279–85. http://dx.doi.org/10.1021/jp050508u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nagai, Yusuke, Tatsuya Yamaguchi i Kotaro Kajikawa. "Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy". Journal of Physical Chemistry C 116, nr 17 (23.04.2012): 9716–23. http://dx.doi.org/10.1021/jp211234p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Lorén, A., J. Engelbrektsson, C. Eliasson, M. Josefson, J. Abrahamsson, M. Johansson i K. Abrahamsson. "Internal Standard in Surface-Enhanced Raman Spectroscopy". Analytical Chemistry 76, nr 24 (grudzień 2004): 7391–95. http://dx.doi.org/10.1021/ac0491298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Perevedentseva, E., A. Karmenyan, P. H. Chung, Y. T. He i C. L. Cheng. "Surface enhanced Raman spectroscopy of carbon nanostructures". Surface Science 600, nr 18 (wrzesień 2006): 3723–28. http://dx.doi.org/10.1016/j.susc.2006.01.074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Milekhin, A. G., L. L. Sveshnikova, T. A. Duda, N. A. Yeryukov, E. E. Rodyakina, A. K. Gutakovskii, S. A. Batsanov, A. V. Latyshev i D. R. T. Zahn. "Surface-enhanced Raman spectroscopy of semiconductor nanostructures". Physica E: Low-dimensional Systems and Nanostructures 75 (styczeń 2016): 210–22. http://dx.doi.org/10.1016/j.physe.2015.09.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chauvet, Romain, Fabienne Lagarde, Thomas Charrier, Ali Assaf, Gerald Thouand i Philippe Daniel. "Microbiological identification by surface-enhanced Raman spectroscopy". Applied Spectroscopy Reviews 52, nr 2 (7.07.2016): 123–44. http://dx.doi.org/10.1080/05704928.2016.1209760.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Haynes, Christy L., i Richard P. Van Duyne. "Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy†". Journal of Physical Chemistry B 107, nr 30 (lipiec 2003): 7426–33. http://dx.doi.org/10.1021/jp027749b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Lemma, Tibebe, Jin Wang, Kai Arstila, Vesa P. Hytönen i J. Jussi Toppari. "Identifying yeasts using surface enhanced Raman spectroscopy". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 218 (lipiec 2019): 299–307. http://dx.doi.org/10.1016/j.saa.2019.04.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Durucan, Onur, Tomas Rindzevicius, Michael Stenbæk Schmidt, Marco Matteucci i Anja Boisen. "Nanopillar Filters for Surface-Enhanced Raman Spectroscopy". ACS Sensors 2, nr 10 (29.09.2017): 1400–1404. http://dx.doi.org/10.1021/acssensors.7b00499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Lin, Xiu-Mei, Yan Cui, Yan-Hui Xu, Bin Ren i Zhong-Qun Tian. "Surface-enhanced Raman spectroscopy: substrate-related issues". Analytical and Bioanalytical Chemistry 394, nr 7 (19.04.2009): 1729–45. http://dx.doi.org/10.1007/s00216-009-2761-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Vongsvivut, Jitraporn, Evan G. Robertson i Don McNaughton. "Surface-Enhanced Raman Scattering Spectroscopy of Resveratrol". Australian Journal of Chemistry 61, nr 12 (2008): 921. http://dx.doi.org/10.1071/ch08204.

Pełny tekst źródła
Streszczenie:
We report here, for the first time, the surface-enhanced Raman scattering (SERS) spectra of resveratrol using KNO3-aggregated citrate-reduced silver (Ag) colloids. The technique provided a substantial spectral enhancement and therefore good quality spectra of resveratrol at parts per million (ppm) concentrations. The detection limit was found to be <1 μM, equivalent to <0.2 ppm. The SERS profile additionally closely resembled its normal solid-state Raman spectrum with some changes in relative intensity. These intensity changes, together with a precise band assignment aided by density functional theory calculations at the B3LYP/6–31G(d) level, allowed the determination of the structural orientation of the adsorbed resveratrol on the surface of the metal nanoparticles. In particular, the SERS spectra obtained at different resveratrol concentrations exhibited concentration-dependent features, suggesting an influence of surface coverage on the orientation of the adsorbed molecules. At a high concentration, an adoption of close-to-upright orientation of resveratrol adsorbed on the metal surface through the p-OH phenyl ring is favoured. The binding structure is, however, altered at lower surface coverage when the concentration decreases to a tilted orientation with the trans-olefin C=C bond aligning closer to parallel to the surface of the Ag nanoparticles.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii