Artykuły w czasopismach na temat „Surface active agents”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Surface active agents.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Surface active agents”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Eissa, A. M. F. "Amphoteric surface active agents". Grasas y Aceites 46, nr 4-5 (30.10.1995): 240–44. http://dx.doi.org/10.3989/gya.1995.v46.i4-5.931.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pirog, T. P. "MICROBIAL SURFACE-ACTIVE SUBSTANCES AS ANTIADHESIVE AGENTS". Biotechnologia Acta 9, nr 3 (2016): 7–22. http://dx.doi.org/10.15407/biotech9.03.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

El-Dougdoug, W. I. A. "Synthesis and surface active properties of cationic surface active agents from crude rice bran oil". Grasas y Aceites 50, nr 5 (30.10.1999): 385–91. http://dx.doi.org/10.3989/gya.1999.v50.i5.683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

MATUURA, Ryohei. "Adsorption of Surface Active Agents". Journal of Japan Oil Chemists' Society 34, nr 2 (1985): 137–42. http://dx.doi.org/10.5650/jos1956.34.137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

NTSHIDA, Shigeo, i Teruhisa SATSUKI. "Application of Surface Active Agents". Journal of Japan Oil Chemists' Society 41, nr 9 (1992): 937–45. http://dx.doi.org/10.5650/jos1956.41.937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pryce, A. "Surface active agents: some applications in surface coatings". Pigment & Resin Technology 16, nr 2 (luty 1987): 15–21. http://dx.doi.org/10.1108/eb042329.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

NAKAMURA, Yoshinobu. "New Function of Surface Active Agents". Journal of the Japan Society of Colour Material 60, nr 2 (1987): 111–16. http://dx.doi.org/10.4011/shikizai1937.60.111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

&NA;. "Surface active agents in respiratory disorders". Inpharma Weekly &NA;, nr 721 (styczeń 1990): 18–19. http://dx.doi.org/10.2165/00128413-199007210-00045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chasova, E. V., О. V. Demchyshyna, V. V. Borysenko i V. I. Lysenko. "Photometric determination of anionic surface-active agents". Mining Journal of Kryvyi Rih National University, nr 103 (2018): 36–39. http://dx.doi.org/10.31721/2306-5435-2018-1-103-36-39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

MIYAZAWA, Kiyoshi. "Application of Surface Active Agents in Cosmetics". Journal of Japan Oil Chemists' Society 41, nr 9 (1992): 946–49. http://dx.doi.org/10.5650/jos1956.41.946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Cooper, David G., i Beena G. Goldenberg. "Surface-Active Agents from Two Bacillus Species". Applied and Environmental Microbiology 53, nr 2 (1987): 224–29. http://dx.doi.org/10.1128/aem.53.2.224-229.1987.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

&NA;. "Surface active agents in respiratory disorders (continued)". Inpharma Weekly &NA;, nr 722 (luty 1990): 22. http://dx.doi.org/10.2165/00128413-199007220-00052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Hornof, V., i R. Hombek. "Surface-active agents based on propoxylated lignosulfonate". Journal of Applied Polymer Science 41, nr 910 (1990): 2391–98. http://dx.doi.org/10.1002/app.1990.070410939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Mathews, D. H. "Surface-active agents in bituminous road materials". Journal of Applied Chemistry 12, nr 2 (4.05.2007): 56–64. http://dx.doi.org/10.1002/jctb.5010120202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

YAMADA, Akifumi. "Use of Surface-Active Agents in Construction Industry". Journal of Japan Oil Chemists' Society 45, nr 10 (1996): 1169–77. http://dx.doi.org/10.5650/jos1996.45.1169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Olkowska, Ewa, Marek Ruman i Żaneta Polkowska. "Occurrence of Surface Active Agents in the Environment". Journal of Analytical Methods in Chemistry 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/769708.

Pełny tekst źródła
Streszczenie:
Due to the specific structure of surfactants molecules they are applied in different areas of human activity (industry, household). After using and discharging from wastewater treatment plants as effluent stream, surface active agents (SAAs) are emitted to various elements of the environment (atmosphere, waters, and solid phases), where they can undergo numerous physic-chemical processes (e.g., sorption, degradation) and freely migrate. Additionally, SAAs present in the environment can be accumulated in living organisms (bioaccumulation), what can have a negative effect on biotic elements of ecosystems (e.g., toxicity, disturbance of endocrine equilibrium). They also cause increaseing solubility of organic pollutants in aqueous phase, their migration, and accumulation in different environmental compartments. Moreover, surfactants found in aerosols can affect formation and development of clouds, which is associated with cooling effect in the atmosphere and climate changes. The environmental fate of SAAs is still unknown and recognition of this problem will contribute to protection of living organisms as well as preservation of quality and balance of various ecosystems. This work contains basic information about surfactants and overview of pollution of different ecosystems caused by them (their classification and properties, areas of use, their presence, and behavior in the environment).
Style APA, Harvard, Vancouver, ISO itp.
17

BRISE, HANS. "EFFECT OF SURFACE-ACTIVE AGENTS ON IRON ABSORPTION". Acta Medica Scandinavica 171, S376 (24.04.2009): 47–50. http://dx.doi.org/10.1111/j.0954-6820.1962.tb18682.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Bower, C. K., M. K. Bothwell i J. McGuire. "Lantibiotics as surface active agents for biomedical applications". Colloids and Surfaces B: Biointerfaces 22, nr 4 (grudzień 2001): 259–65. http://dx.doi.org/10.1016/s0927-7765(01)00199-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kalinichenko, K. P. "Quantitation of Cationic Surface-Active Agents in Natural Waters". Hydrobiological Journal 35, nr 1 (1999): 70–76. http://dx.doi.org/10.1615/hydrobj.v35.i1.80.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Büyükdere, Burcu Kangal, Cüneyt H. Ünlü i Oya G. Atıcı. "Synthesis of surface active agents from natural waste phenolics". Tenside Surfactants Detergents 59, nr 2 (28.02.2022): 192–203. http://dx.doi.org/10.1515/tsd-2021-2386.

Pełny tekst źródła
Streszczenie:
Abstract Corn cob and tea leaves waste are used as raw materials for condensed phenolic structures. In this study phenolics were extracted from these waste materials, characterized, and modified to obtain surface active materials. The phenolic structures of corn cob were HGS-type lignin with 10% by mass of initial dry weight, while of tea waste were condensed tannin with catechin-like fragments with 15% by mass. Hydroxymethylation reactions were carried out to increase the reactive sites and also the water solubility. The phenolics of the corn cob were hydroxymethylated to a higher rate than the phenolics of the tea leaves waste (85 vs. 48%). Subsequent modification with maleic anhydride was carried out at a rate of about 40% for both types. Visual determinations indicated that all the materials obtained behaved like non-ionic surfactants. However, sulfonation of tannin structure (at a rate of 40%) resulted in an anionic surfactant structure, as expected.
Style APA, Harvard, Vancouver, ISO itp.
21

Szymanowski, J. "The Estimation of Some Properties of Surface Active Agents". Tenside Surfactants Detergents 27, nr 6 (1.12.1990): 386–92. http://dx.doi.org/10.1515/tsd-1990-270607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Wagner, Martin, i H. Johannes Pöpel. "Surface active agents and their influence on oxygen transfer". Water Science and Technology 34, nr 3-4 (1.08.1996): 249–56. http://dx.doi.org/10.2166/wst.1996.0438.

Pełny tekst źródła
Streszczenie:
Oxygen transfer rates of fine bubble aeration systems in uniform arrangement are reduced down to 40% to 70% in wastewater compared to clean water conditions. Surfactants in wastewater are the main reason for the inferior and therefore uneconomic performance. The influence of different types of surfactants (anionic and nonionic) and of their concentration on oxygen transfer is investigated at various properties of pure water (content of electrolytes, hardness) by means of extensive experiments. The main results of the investigations are:in dependence of the type of surfactant, its concentration and the types of water:– the aeration coefficient kLa decreases (down to 55%)– the specific interfacial area (a) increases (up to 350%)– the oxygen transfer coefficient (kL) decreases (down to 20%)nonionic surfactants reduce the oxygen transfer more strongly than anionic surfactantsat the same surface tension, but different types of surfactant α-values can vary over a range of 0.12. Therefore α-values can not be calculated from surface tension measurementsα-values of approximately 0.55 should be taken for designing fine bubble aeration systemsIn new guidelines for the measurement of oxygen transfer rates, addition of 5 gm−3 of an arbitrary surfactant into clean water to simulate wastewater conditions must be abandoned.
Style APA, Harvard, Vancouver, ISO itp.
23

Bouwman, A. M., M. P. Heijstra, N. C. Schaefer, E. J. Duiverman, P. N. LeSouëf i S. G. Devadason. "Improved Efficiency of Budesonide Nebulization Using Surface-Active Agents". Drug Delivery 13, nr 5 (styczeń 2006): 357–63. http://dx.doi.org/10.1080/10717540500458862.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ma, Yunqing, Changsheng Chen i Xianren Zhang. "Surface active agents stabilize nanodroplets and enhance haze formation". Chinese Physics B 30, nr 1 (styczeń 2021): 010504. http://dx.doi.org/10.1088/1674-1056/abca1e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Abdulraheim, Abdulraheim Mahmoud. "Green polymeric surface active agents for crude oil demulsification". Journal of Molecular Liquids 271 (grudzień 2018): 329–41. http://dx.doi.org/10.1016/j.molliq.2018.08.153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Khan, Winston. "Eddy damping by surface active agents in interfacial turbulence". Mathematical Modelling 6, nr 2 (1985): 97–109. http://dx.doi.org/10.1016/0270-0255(85)90002-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Bossche, Geert Vanden. "Alteration of viral infectious behavior by surface active agents". Microbiological Research 149, nr 2 (czerwiec 1994): 105–14. http://dx.doi.org/10.1016/s0944-5013(11)80104-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Howsaway, Hamida O., i Refat El-Sayed. "Synthesis of Potential Pharmaceutical Heterocycles as Surface Active Agents". Journal of Surfactants and Detergents 20, nr 3 (27.02.2017): 681–94. http://dx.doi.org/10.1007/s11743-017-1936-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Khvorova, L. S., N. D. Lukin i L. V. Baranova. "GLUCOSE NUCLEATION IN THE PRESENCE OF SURFACE ACTIVE AGENTS". Foods and Raw materials 6, nr 1 (20.06.2018): 219–29. http://dx.doi.org/10.21603/2308-4057-2018-1-219-229.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kuwabata, Susumu, Yoiche Maida i Hiroshi Yoneyama. "Electrodes coated with polystyrene films containing surface-active agents". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 242, nr 1-2 (luty 1988): 143–54. http://dx.doi.org/10.1016/0022-0728(88)80246-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Gorbunov, B., i R. Hamilton. "Water nucleation on aerosol particles containing surface-active agents". Journal of Aerosol Science 27 (wrzesień 1996): S385—S386. http://dx.doi.org/10.1016/0021-8502(96)00265-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kabachnyi, V. I., V. P. Chernykh, G. I. Kabachnyi i E. M. Sopel'nik. "Production of surface-active agents with pronounced pharmacological activity". Pharmaceutical Chemistry Journal 19, nr 1 (styczeń 1985): 33–35. http://dx.doi.org/10.1007/bf00767101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kaczorowski, Marcin, i Gabriel Rokicki. "Reactive surfactants – chemistry and applications. Part II. Surface - active initiators (inisurfs) and surface - active transfer agents (transurfs)". Polimery 62 (luty 2017): 79–85. http://dx.doi.org/10.14314/polimery.2017.079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Stasiewicz, Karol A., Wiktor Bereski, Iwona Jakubowska, Rafał Kowerdziej, Dorota Węgłowska i Anna Spadło. "The Biopolymer Active Surface for Optical Fibre Sensors". Polymers 16, nr 15 (25.07.2024): 2114. http://dx.doi.org/10.3390/polym16152114.

Pełny tekst źródła
Streszczenie:
Optical fibre sensors have the potential to be overly sensitive and responsive, making them useful in various applications to detect the presence of pollutants in the environment, toxic gasses, or pesticides in soil. Deoxyribonucleic acid (DNA) as biopolymer active surfaces for fibre sensors can be designed to detect specific molecules or compounds accurately. In the article, we propose to use an optical fibre taper and DNA complex with surfactant-based sensors to offer a promising approach for gas detection, including ammonia solution, 1,4 thioxane, and trimethyl phosphate imitating hazardous agents. The presented results describe the influence of the adsorption of evaporation of measured agents to the DNA complex layer on a light leakage outside the structure of an optical fibre taper. The DNA layer with additional gas molecules becomes a new cladding of the taper structure, with the possibility to change its properties. The process of adsorption causes a change in the layer’s optical properties surrounding a taper-like refractive index and increasing layer diameter, which changes the boundary condition of the structure and interacts with light in a wide spectral range of 600–1200 nm. The research’s novelty is implementing a DNA complex active surface as the biodegradable biopolymer alignment for optical devices like in-line fibre sensors and those enabled for hazardous agent detection for substances appearing in the environment as industrial or even warfare toxic agents.
Style APA, Harvard, Vancouver, ISO itp.
35

Litton, Gary M., i Terese M. Olson. "Colloid Deposition Kinetics with Surface-Active Agents: Evidence for Discrete Surface Charge Effects". Journal of Colloid and Interface Science 165, nr 2 (lipiec 1994): 522–25. http://dx.doi.org/10.1006/jcis.1994.1258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Shimo, Salima Sultana, i Sumon Mazumder. "Effective Surface Active Agents for Improving Colorfastness of Reactive Dyeing". International Journal of Scientific Engineering and Technology 4, nr 3 (1.03.2015): 187–91. http://dx.doi.org/10.17950/ijset/v4s3/315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Khazipova, R. H., Z. M. Khusainov i R. R. Kabirov. "Limits of tolerance of soil algae to surface-active agents". International Journal on Algae 2, nr 2 (2000): 105–12. http://dx.doi.org/10.1615/interjalgae.v2.i2.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

KUROIWA, Shigetaka. "Properties of the Aqueous Solutions of Surface Active Agents. III·B". Journal of Japan Oil Chemists' Society 34, nr 6 (1985): 479–87. http://dx.doi.org/10.5650/jos1956.34.479.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Ahmad, Asif, Nazish Arshad, Zaheer Ahmed, Muhammad Shahbaz Bhatti, Tahir Zahoor, Nomana Anjum, Hajra Ahmad i Asma Afreen. "Perspective of Surface Active Agents in Baking Industry: An Overview". Critical Reviews in Food Science and Nutrition 54, nr 2 (4.11.2013): 208–24. http://dx.doi.org/10.1080/10408398.2011.579697.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Iskandarov, R. S., i Kh M. Kamilov. "Extraction of rutin fromSophora japonica buds using surface-active agents". Chemistry of Natural Compounds 34, nr 4 (lipiec 1998): 448–49. http://dx.doi.org/10.1007/bf02329592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Peltier, Raoul, Wai Ruu Siah, Grant V. M. Williams, Margaret A. Brimble, Richard D. Tilley i David E. Williams. "Novel Phosphopeptides as Surface-Active Agents in Iron Nanoparticle Synthesis". Australian Journal of Chemistry 65, nr 6 (2012): 680. http://dx.doi.org/10.1071/ch12168.

Pełny tekst źródła
Streszczenie:
We report the dramatic effect of rationally-designed phosphopeptides on the size and shape of iron-iron oxide core-shell nanoparticles prepared in a one-pot synthesis by sodium borohydride reduction of an iron salt. These phosphopeptides are effective at small ratios of peptide to metal, in contrast to the behaviour of conventional capping agents, which must be added at high concentration to control the particle growth.
Style APA, Harvard, Vancouver, ISO itp.
42

Murashova, I. B., N. E. Agarova, A. B. Darintseva, A. B. Lebed i L. M. Yakovleva. "Formation of copper deposits under electrolysis with surface-active agents". Powder Metallurgy and Metal Ceramics 49, nr 1-2 (maj 2010): 1–7. http://dx.doi.org/10.1007/s11106-010-9194-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Srinivasa Rao, A. "Stability of alumina dispersions in presence of surface active agents". Ceramics International 14, nr 1 (styczeń 1988): 49–57. http://dx.doi.org/10.1016/0272-8842(88)90018-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Yu, Qiannan, Yikun Liu, Shuang Liang, Shuai Tan, Chenghan Chen, Zhi Sun i Yang Yu. "Characteristics of increasing displacement efficiency by surface-active polymer flooding for enhancing oil recovery". Journal of Petroleum Exploration and Production Technology 11, nr 3 (marzec 2021): 1403–14. http://dx.doi.org/10.1007/s13202-021-01117-1.

Pełny tekst źródła
Streszczenie:
AbstractSurface-active polymer is a novel multifunctional active polymer applied for enhancing oil recovery which has both viscosity-increasing ability and surface activity. Experiments were carried out to indicate basic physicochemical properties of surface-active polymer and to study on differences of properties between surface-active polymer and other chemical flooding agents, and characteristics of increasing displacement efficiency by surface-active polymer flooding have been tested. Experimental results show that the molecular aggregation conformation, viscosity performance and flow capacity of surface-active polymer were significantly different from those of other chemical flooding agents. Positive effects of viscosity and viscoelastic properties and improvements in interfacial chemical properties are basic characteristics of increasing displacement efficiency by surface-active polymer flooding which are basic principles of surface-active polymer flooding for enhancing oil recovery.
Style APA, Harvard, Vancouver, ISO itp.
45

Anestopoulos, Ioannis, Despoina Eugenia Kiousi, Ariel Klavaris, Alex Galanis, Karina Salek, Stephen R. Euston, Aglaia Pappa i Mihalis I. Panayiotidis. "Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance". Pharmaceutics 12, nr 7 (21.07.2020): 688. http://dx.doi.org/10.3390/pharmaceutics12070688.

Pełny tekst źródła
Streszczenie:
Surface active agents (SAAs) are molecules with the capacity to adsorb to solid surfaces and/or fluid interfaces, a property that allows them to act as multifunctional ingredients (e.g., wetting and dispersion agents, emulsifiers, foaming and anti-foaming agents, lubricants, etc.) in a widerange of the consumer products of various industrial sectors (e.g., pharmaceuticals, cosmetics, personal care, detergents, food, etc.). Given their widespread utilization, there is a continuously growing interest to explore their role in consumer products (relevant to promoting human health) and how such information can be utilized in order to synthesize better chemical derivatives. In this review article, weaimed to provide updated information on synthetic and biological (biosurfactants) SAAs and their health-promoting properties (e.g., anti-microbial, anti-oxidant, anti-viral, anti-inflammatory, anti-cancer and anti-aging) in an attempt to better define some of the underlying mechanism(s) by which they exert such properties.
Style APA, Harvard, Vancouver, ISO itp.
46

Basařová, P., T. Váchová, G. Moore, G. Nannetti i J. Pišlová. "Bubble adhesion onto the hydrophobic surface in solutions of non-ionic surface-active agents". Colloids and Surfaces A: Physicochemical and Engineering Aspects 505 (wrzesień 2016): 64–71. http://dx.doi.org/10.1016/j.colsurfa.2015.11.069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

ISHISONE, AKIHIRO. "Effect of surface active agents on the membrane type artificial lung." Japanese journal of extra-corporeal technology 23, nr 1 (1996): 63–64. http://dx.doi.org/10.7130/hokkaidoshakai.23.63.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Tubtimsri, Sukannika, i Yotsanan Weerapol. "Development of Nifedipine Amorphous Solid Dispersion Composed of Surface-Active Agents". Key Engineering Materials 901 (8.10.2021): 35–39. http://dx.doi.org/10.4028/www.scientific.net/kem.901.35.

Pełny tekst źródła
Streszczenie:
The amorphous solid dispersions (ASDs) containing amino methacrylate copolymer and surface-active agents were prepared to improve the nifedipine (NDP) dissolution. The different types of surface-active agent i.e., polysorbates 80, sodium lauryl sulfate (SLS) and polyethylene glycol (PEG) 400 were used. In order to evaluate the ASDs formulation,powder X-ray diffractometry and thermal analysis to characterize NDP crystallinity in ASDs and the dissolution study of NDP have been performed to compare the dissolution profiles. The ASDs were kept for 6 months to investigate the stability. In the X-ray diffraction pattern, no peak was observed in all samples of ASDs. No peak was found in sample of all ASDs from the thermograms. These results suggest that the drug may be molecularly dispersed in matrix of amino methacrylate copolymer. The drug dissolution at 120 min, from ASDs without surface-active agent and NDP powder were 58.31% and 17.95%, respectively. The dissolved NDP from ASDs composed of SLS, polysorbate 80 and PEG400 were 96.25%, 88.86% and 75.32%, respectively. These results may occur due to the reduction of surface tension, the addition of the low amount of high efficiency of surface-active agent e.g., SLS (compared with PEG400 and polysorbate 80) provided the higher NDP dissolution. The content analysis of NDP in selected ASDs was studied at the end of 3 and 6 months, the NDP content remained unchanged after storage.
Style APA, Harvard, Vancouver, ISO itp.
49

Farkhani, Dariush, Ali Asghar Khalili i Ali Mehdizadeh. "The Role of Surface Active Agents in Sulfonation of Double Bonds". Tenside Surfactants Detergents 51, nr 4 (15.07.2014): 352–55. http://dx.doi.org/10.3139/113.110317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

NAKA, Akihiro, Yoshihisa NISHIDA, Osamu MURAKAMI i Hiroshi SUGIYAMA. "Stabilization of highly-loaded coal-water mixture by surface active agents." NIPPON KAGAKU KAISHI, nr 10 (1986): 1342–47. http://dx.doi.org/10.1246/nikkashi.1986.1342.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii