Artykuły w czasopismach na temat „Surface Activated Bonding”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Surface Activated Bonding”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Takeuchi, Kai, Junsha Wang, Beomjoon Kim, Tadatomo Suga, and Eiji Higurashi. "Room temperature bonding of Au assisted by self-assembled monolayer." Applied Physics Letters 122, no. 5 (2023): 051603. http://dx.doi.org/10.1063/5.0128187.
Pełny tekst źródłaLomonaco, Quentin, Karine Abadie, Jean-Michel Hartmann, et al. "Soft Surface Activated Bonding of Hydrophobic Silicon Substrates." ECS Meeting Abstracts MA2023-02, no. 33 (2023): 1601. http://dx.doi.org/10.1149/ma2023-02331601mtgabs.
Pełny tekst źródłaODA, Tomohiro, Tomoyuki ABE, and Isao KUSUNOKI. "Wafer Bonding by Surface Activated Method." Shinku 49, no. 5 (2006): 310–12. http://dx.doi.org/10.3131/jvsj.49.310.
Pełny tekst źródłaLomonaco, Quentin, Karine Abadie, Jean-Michel Hartmann, et al. "Soft Surface Activated Bonding of Hydrophobic Silicon Substrates." ECS Transactions 112, no. 3 (2023): 139–45. http://dx.doi.org/10.1149/11203.0139ecst.
Pełny tekst źródłaYang, Song, Ningkang Deng, Yongfeng Qu, et al. "Argon Ion Beam Current Dependence of Si-Si Surface Activated Bonding." Materials 15, no. 9 (2022): 3115. http://dx.doi.org/10.3390/ma15093115.
Pełny tekst źródłaYang, Song, Ningkang Deng, Yongfeng Qu, et al. "Argon Ion Beam Current Dependence of Si-Si Surface Activated Bonding." Materials 15, no. 9 (2022): 3115. http://dx.doi.org/10.3390/ma15093115.
Pełny tekst źródłaYang, Song, Ningkang Deng, Yongfeng Qu, et al. "Argon Ion Beam Current Dependence of Si-Si Surface Activated Bonding." Materials 15, no. 9 (2022): 3115. http://dx.doi.org/10.3390/ma15093115.
Pełny tekst źródłaSuga, Tadatomo, Fengwen Mu, Masahisa Fujino, Yoshikazu Takahashi, Haruo Nakazawa, and Kenichi Iguchi. "Silicon carbide wafer bonding by modified surface activated bonding method." Japanese Journal of Applied Physics 54, no. 3 (2015): 030214. http://dx.doi.org/10.7567/jjap.54.030214.
Pełny tekst źródłaHe, Ran, Masahisa Fujino, Akira Yamauchi, and Tadatomo Suga. "Novel hydrophilic SiO2wafer bonding using combined surface-activated bonding technique." Japanese Journal of Applied Physics 54, no. 3 (2015): 030218. http://dx.doi.org/10.7567/jjap.54.030218.
Pełny tekst źródłaSUGA, Tadatomo. "Low Temperature Bonding for 3D Integration-Surface Activated Bonding (SAB)." Hyomen Kagaku 35, no. 5 (2014): 262–66. http://dx.doi.org/10.1380/jsssj.35.262.
Pełny tekst źródłaSuga, Tadatomo. "Low Temperature Bonding by Means of the Surface Activated Bonding Method." Materia Japan 35, no. 5 (1996): 496–500. http://dx.doi.org/10.2320/materia.35.496.
Pełny tekst źródłaKim, T. H., M. M. R. Howlader, T. Itoh, and T. Suga. "Room temperature Cu–Cu direct bonding using surface activated bonding method." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, no. 2 (2003): 449–53. http://dx.doi.org/10.1116/1.1537716.
Pełny tekst źródłaChang, Chao Cheng. "Molecular Dynamics Simulation of Aluminium Thin Film Surface Activated Bonding." Key Engineering Materials 486 (July 2011): 127–30. http://dx.doi.org/10.4028/www.scientific.net/kem.486.127.
Pełny tekst źródłaUTSUMI, Jun, Kensuke IDE, and Yuko ICHIYANAGI. "Room Temperature Wafer Bonding by Surface Activated Method." Hyomen Kagaku 38, no. 2 (2017): 72–76. http://dx.doi.org/10.1380/jsssj.38.72.
Pełny tekst źródłaKerepesi, Péter, Bernhard Rebhan, Matthias Danner, et al. "Oxide-Free SiC-SiC Direct Wafer Bonding and Its Characterization." ECS Transactions 112, no. 3 (2023): 159–72. http://dx.doi.org/10.1149/11203.0159ecst.
Pełny tekst źródłaHigurashi, Eiji, Yuta Sasaki, Ryuji Kurayama, et al. "Room-temperature direct bonding of germanium wafers by surface-activated bonding method." Japanese Journal of Applied Physics 54, no. 3 (2015): 030213. http://dx.doi.org/10.7567/jjap.54.030213.
Pełny tekst źródłaHe, Ran, Masahisa Fujino, Akira Yamauchi, and Tadatomo Suga. "Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding." Japanese Journal of Applied Physics 55, no. 4S (2016): 04EC02. http://dx.doi.org/10.7567/jjap.55.04ec02.
Pełny tekst źródłaHe, Ran, Masahisa Fujino, Akira Yamauchi, Yinghui Wang, and Tadatomo Suga. "Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding." ECS Journal of Solid State Science and Technology 5, no. 7 (2016): P419—P424. http://dx.doi.org/10.1149/2.0201607jss.
Pełny tekst źródłaHe, R., M. Fujino, A. Yamauchi, and T. Suga. "Combined Surface-Activated Bonding Technique for Low-Temperature Cu/SiO2 Hybrid Bonding." ECS Transactions 69, no. 6 (2015): 79–88. http://dx.doi.org/10.1149/06906.0079ecst.
Pełny tekst źródłaSuga, T. "Cu-Cu Room Temperature Bonding - Current Status of Surface Activated Bonding(SAB) -." ECS Transactions 3, no. 6 (2019): 155–63. http://dx.doi.org/10.1149/1.2357065.
Pełny tekst źródłaShigetou, A., T. Itoh, and T. Suga. "Direct bonding of CMP-Cu films by surface activated bonding (SAB) method." Journal of Materials Science 40, no. 12 (2005): 3149–54. http://dx.doi.org/10.1007/s10853-005-2677-1.
Pełny tekst źródłaMu, Fengwen, Kenichi Iguchi, Haruo Nakazawa, et al. "A comparison study: Direct wafer bonding of SiC–SiC by standard surface-activated bonding and modified surface-activated bonding with Si-containing Ar ion beam." Applied Physics Express 9, no. 8 (2016): 081302. http://dx.doi.org/10.7567/apex.9.081302.
Pełny tekst źródłaDanner, Matthias, Bernhard Rebhan, Péter Kerepesi, and Wolfgang S. M. Werner. "Surface Activated Si-Si Wafer Bonding Using Different Ion Species." ECS Transactions 112, no. 3 (2023): 119–24. http://dx.doi.org/10.1149/11203.0119ecst.
Pełny tekst źródłaDanner, Matthias, Bernhard Rebhan, Péter Kerepesi, and Wolfgang S. M. Werner. "Surface Activated Si-Si Wafer Bonding Using Different Ion Species." ECS Meeting Abstracts MA2023-02, no. 33 (2023): 1599. http://dx.doi.org/10.1149/ma2023-02331599mtgabs.
Pełny tekst źródłaAbadie, Karine, Quentin Lomonaco, Laurent Michaud, Frank Fournel, and Christophe Morales. "(First Best Paper Award) Vacuum Quality Impact on Covalent Bonding." ECS Meeting Abstracts MA2023-02, no. 33 (2023): 1600. http://dx.doi.org/10.1149/ma2023-02331600mtgabs.
Pełny tekst źródłaLomonaco, Quentin, Karine Abadie, Christophe Morales, et al. "Stress Engineering in Germanium-Silicon Heterostructure Using Surface Activated Hot Bonding." ECS Transactions 109, no. 4 (2022): 277–87. http://dx.doi.org/10.1149/10904.0277ecst.
Pełny tekst źródłaChoowitsakunlert, Salinee, Kenji Takagiwa, Takuya Kobashigawa, Nariaki Hosoya, Rardchawadee Silapunt, and Hideki Yokoi. "Fabrication Processes of SOI Structure for Optical Nonreciprocal Devices." Key Engineering Materials 777 (August 2018): 107–12. http://dx.doi.org/10.4028/www.scientific.net/kem.777.107.
Pełny tekst źródłaKim, Kyung Hoon, Soon Hyung Hong, Seung Il Cha, Sung Chul Lim, Hyouk Chon Kwon, and Won Kyu Yoon. "Bonding Quality of Copper-Nickel Fine Clad Metal Prepared by Surface Activated Bonding." MATERIALS TRANSACTIONS 51, no. 4 (2010): 787–92. http://dx.doi.org/10.2320/matertrans.m2009354.
Pełny tekst źródłaHe, R., M. Fujino, A. Yamauchi, and T. Suga. "Combined Surface Activated Bonding Technique for Hydrophilic SiO2-SiO2 and Cu-Cu Bonding." ECS Transactions 75, no. 9 (2016): 117–28. http://dx.doi.org/10.1149/07509.0117ecst.
Pełny tekst źródłaTakagi, H., Y. Kurashima, and T. Suga. "(Invited) Surface Activated Wafer Bonding; Principle and Current Status." ECS Transactions 75, no. 9 (2016): 3–8. http://dx.doi.org/10.1149/07509.0003ecst.
Pełny tekst źródłaLi, Y., S. Wang, B. Sun, et al. "Room Temperature Wafer Bonding by Surface Activated ALD- Al2O3." ECS Transactions 50, no. 7 (2013): 303–11. http://dx.doi.org/10.1149/05007.0303ecst.
Pełny tekst źródłaHowlader, M. M. R., H. Okada, T. H. Kim, T. Itoh, and T. Suga. "Wafer Level Surface Activated Bonding Tool for MEMS Packaging." Journal of The Electrochemical Society 151, no. 7 (2004): G461. http://dx.doi.org/10.1149/1.1758723.
Pełny tekst źródłaTakagi, H., K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga. "Surface activated bonding of silicon wafers at room temperature." Applied Physics Letters 68, no. 16 (1996): 2222–24. http://dx.doi.org/10.1063/1.115865.
Pełny tekst źródłaHowlader, M. M. R., T. Suga, A. Takahashi, K. Saijo, S. Ozawa, and K. Nanbu. "Surface activated bonding of LCP/Cu for electronic packaging." Journal of Materials Science 40, no. 12 (2005): 3177–84. http://dx.doi.org/10.1007/s10853-005-2681-5.
Pełny tekst źródłaGardner, Douglas J., Jeffrey G. Ostmeyer, and Thomas J. Elder. "Bonding Surface Activated Hardwood Flakeboard with Phenol-Formaldehyde Resin." Holzforschung 45, no. 3 (1991): 215–22. http://dx.doi.org/10.1515/hfsg.1991.45.3.215.
Pełny tekst źródłaKim, Kyung Hoon, Sung Chul Lim, and Hyouk Chon Kwon. "The Effects of Heat Treatment on the Bonding Strength of Surface-Activated Bonding (SAB)-Treated Copper-Nickel Fine Clad Metals." Materials Science Forum 654-656 (June 2010): 1932–35. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1932.
Pełny tekst źródłaLomonaco, Quentin, Karine Abadie, Christophe Morales, et al. "Stress Engineering in Germanium-Silicon Heterostructure Using Surface Activated Hot Bonding." ECS Meeting Abstracts MA2022-02, no. 32 (2022): 1219. http://dx.doi.org/10.1149/ma2022-02321219mtgabs.
Pełny tekst źródłaChan, Cho X. J., and Peter N. Lipke. "Role of Force-Sensitive Amyloid-Like Interactions in Fungal Catch Bonding and Biofilms." Eukaryotic Cell 13, no. 9 (2014): 1136–42. http://dx.doi.org/10.1128/ec.00068-14.
Pełny tekst źródłaKlokkevold, Katherine N., Weston Keeven, Dong Hun Lee, et al. "Low-temperature metal/Zerodur heterogeneous bonding through gas-phase processed adhesion promoting interfacial layers." AIP Advances 12, no. 10 (2022): 105224. http://dx.doi.org/10.1063/6.0002114.
Pełny tekst źródłaUtsumi, Jun, Kensuke Ide, and Yuko Ichiyanagi. "Room temperature bonding of SiO2and SiO2by surface activated bonding method using Si ultrathin films." Japanese Journal of Applied Physics 55, no. 2 (2016): 026503. http://dx.doi.org/10.7567/jjap.55.026503.
Pełny tekst źródłaTakeuchi, Kai, Masahisa Fujino, Yoshiie Matsumoto, and Tadatomo Suga. "Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer." Japanese Journal of Applied Physics 57, no. 4S (2018): 04FC11. http://dx.doi.org/10.7567/jjap.57.04fc11.
Pełny tekst źródłaHe, R., M. Fujino, A. Yamauchi, and T. Suga. "Combined Surface-Activated Bonding (SAB) Technologies for New Approach to Low Temperature Wafer Bonding." ECS Transactions 64, no. 5 (2014): 83–93. http://dx.doi.org/10.1149/06405.0083ecst.
Pełny tekst źródłaMatsumae, T., M. Nakano, Y. Matsumoto, and T. Suga. "Room Temperature Bonding of Polymer to Glass Wafers Using Surface Activated Bonding (SAB) Method." ECS Transactions 50, no. 7 (2013): 297–302. http://dx.doi.org/10.1149/05007.0297ecst.
Pełny tekst źródłaKerepesi, Péter, Bernhard Rebhan, Matthias Danner, et al. "Oxide-Free SiC-SiC Direct Wafer Bonding and Its Characterization." ECS Meeting Abstracts MA2023-02, no. 33 (2023): 1603. http://dx.doi.org/10.1149/ma2023-02331603mtgabs.
Pełny tekst źródłaZhang, Wenting, Caorui Zhang, Junmin Wu, et al. "Low Temperature Hydrophilic SiC Wafer Level Direct Bonding for Ultrahigh-Voltage Device Applications." Micromachines 12, no. 12 (2021): 1575. http://dx.doi.org/10.3390/mi12121575.
Pełny tekst źródłaAbadie, Karine, Quentin Lomonaco, Laurent Michaud, Frank Fournel, and Christophe Morales. "Vacuum Quality Impact on Covalent Bonding." ECS Transactions 112, no. 3 (2023): 125–37. http://dx.doi.org/10.1149/11203.0125ecst.
Pełny tekst źródłaShigekawa, Naoteru, Masashi Morimoto, Shota Nishida, and Jianbo Liang. "Surface-activated-bonding-based InGaP-on-Si double-junction cells." Japanese Journal of Applied Physics 53, no. 4S (2014): 04ER05. http://dx.doi.org/10.7567/jjap.53.04er05.
Pełny tekst źródłaSaijo, Kinji, Kazuo Yoshida, Yoshihiko Isobe, Akio Miyachi, and Kazuyuki Koike. "Development of Clad Sheet Manufacturing Process by Surface Activated Bonding." Materia Japan 39, no. 2 (2000): 172–74. http://dx.doi.org/10.2320/materia.39.172.
Pełny tekst źródłaMatsumae, Takashi, and Tadatomo Suga. "Graphene transfer by surface activated bonding with poly(methyl glutarimide)." Japanese Journal of Applied Physics 57, no. 2S1 (2017): 02BB02. http://dx.doi.org/10.7567/jjap.57.02bb02.
Pełny tekst źródłaLiang, J., K. Furuna, M. Matsubara, M. Dhamrin, Y. Nishio, and N. Shigekawa. "Ultra-Thick Metal Ohmic Contact Fabrication Using Surface Activated Bonding." ECS Transactions 75, no. 9 (2016): 25–32. http://dx.doi.org/10.1149/07509.0025ecst.
Pełny tekst źródła