Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Surface Acoustic Wave.

Artykuły w czasopismach na temat „Surface Acoustic Wave”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Surface Acoustic Wave”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Nakano, Masahiro. "Surface acoustic wave element, surface acoustic wave device, surface acoustic wave duplexer, and method of manufacturing surface acoustic wave element". Journal of the Acoustical Society of America 121, nr 4 (2007): 1826. http://dx.doi.org/10.1121/1.2723967.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sonner, Maximilian M., Farhad Khosravi, Lisa Janker, Daniel Rudolph, Gregor Koblmüller, Zubin Jacob i Hubert J. Krenner. "Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave". Science Advances 7, nr 31 (lipiec 2021): eabf7414. http://dx.doi.org/10.1126/sciadv.abf7414.

Pełny tekst źródła
Streszczenie:
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
Style APA, Harvard, Vancouver, ISO itp.
3

Du, Liangfen, i Zheng Fan. "Anomalous refraction of acoustic waves using double layered acoustic grating". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, nr 6 (30.11.2023): 2396–403. http://dx.doi.org/10.3397/in_2023_0353.

Pełny tekst źródła
Streszczenie:
The paper proposes a double layered acoustic grating for fulfilling acoustic focusing in an anomalous direction. The acoustic grating consists of two layers of rigid panels with periodically perforated slits. By optimizing the positions of the slits on the two layers, both positive and negative refractive indices can be achieved with the phase shift tailored within [-π/2, π/2]. This allows acoustic energy of an obliquely incident plane wave to converge in a predefined focusing region in any direction. The paper predicts the wave propagation manipulated by the acoustic grating based on the surface coupling approach. Then, it discusses how to optimize the slits' positions to collimate the acoustic energy of an obliquely incident plane wave in a specific direction. Such acoustic grating has various potential applications, such as deflecting outdoor noise away from sensitive areas in building acoustics, enhancing acoustic energy in a target audience area in auditorium design, collimating acoustic surface waves, etc.
Style APA, Harvard, Vancouver, ISO itp.
4

Noto, Kenichi. "Surface acoustic wave filter, surface acoustic wave device and communication device". Journal of the Acoustical Society of America 122, nr 6 (2007): 3143. http://dx.doi.org/10.1121/1.2822925.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Yokota, Yuuko. "Surface acoustic wave device, surface acoustic wave apparatus, and communications equipment". Journal of the Acoustical Society of America 124, nr 2 (2008): 702. http://dx.doi.org/10.1121/1.2969605.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Варламов, А. В., В. В. Лебедев, П. М. Агрузов, И. В. Ильичёв i А. В. Шамрай. "Влияние конфигурации и материала встречно-штыревых преобразователей на возбуждение поверхностных и псевдоповерхностных акустических волн в подложках ниобата лития". Письма в журнал технической физики 45, nr 14 (2019): 40. http://dx.doi.org/10.21883/pjtf.2019.14.48023.17749.

Pełny tekst źródła
Streszczenie:
The excitation, distribution, and interaction of surface acoustic waves (SAW) and pseudo surface acoustic waves (PSAW) in a X-cut lithium niobate substrates were investigated. The resonant excitation frequencies, the wave distribution velocities and the dispersion characteristics were determined for each of the wave types. The influence of the interdigital transducer (IDT) material on the excitation efficiency and the interaction between investigated wave types was found out. The interdigital transducer material and configuration requirements for integrated acousto-optic devices were determined.
Style APA, Harvard, Vancouver, ISO itp.
7

Tamon, Ryo, Masaya Takasaki i Takeshi Mizuno. "Surface Acoustic Wave Excitation Using a Pulse Wave". International Journal of Automation Technology 10, nr 4 (5.07.2016): 564–73. http://dx.doi.org/10.20965/ijat.2016.p0564.

Pełny tekst źródła
Streszczenie:
Surface acoustic waves (SAWs) excited by bursts of sinusoidal waves have been used in various applications. However, the SAW actuators used for this purpose are expensive because each SAW transducer must be equipped with a radio frequency linear amplifier and a function generator. To simplify the driving circuits of these actuators, SAW excitation using a pulse wave is proposed in this report. Simulated results for an equivalent circuit of a single interdigital transducer and measurements of SAWs excited by pulse waves are presented. The generation of tactile sensations using a SAW excited by a pulse wave is also reported. Furthermore, the power requirements for SAW excitation by a sinusoidal wave and by a pulse wave are compared.
Style APA, Harvard, Vancouver, ISO itp.
8

Gokani, Chirag A., Thomas S. Jerome, Michael R. Haberman i Mark F. Hamilton. "Born approximation of acoustic radiation force used for acoustofluidic separation". Journal of the Acoustical Society of America 151, nr 4 (kwiecień 2022): A90. http://dx.doi.org/10.1121/10.0010753.

Pełny tekst źródła
Streszczenie:
Acoustofluidic separation often involves biological targets with specific acoustic impedance similar to that of the host fluid, and with dimensions on the order of the acoustic wavelength. This parameter range, combined with the use of standing waves to separate the targets, lends itself to use of the Born approximation for calculating the acoustic radiation force. Considered here is the configuration analyzed by Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)], in which two intersecting plane waves radiated into the fluid by a standing surface acoustic wave exert a force on a eukaryotic cell modeled as a multilayered sphere. The angle of intersection is determined by the velocity of the surface wave and the sound speed in the fluid. The acoustic field in this case is a standing wave parallel to the substrate and a traveling wave perpendicular to the substrate. For all parameter values considered by Peng et al., including spheres several wavelengths in diameter, the Born approximation of the acoustic radiation force parallel to the substrate is in good agreement with a full theory based on spherical wave expansions of the incident and scattered fields. [C.A.G. and T.S.J. were supported by ARL:UT McKinney Fellowships in Acoustics.]
Style APA, Harvard, Vancouver, ISO itp.
9

Yang, Peinian, Dehua Chen i Wang Xiuming. "The research of LWD acoustic isolator based on SAW spatial separation". MATEC Web of Conferences 283 (2019): 02004. http://dx.doi.org/10.1051/matecconf/201928302004.

Pełny tekst źródła
Streszczenie:
Acoustic logging while drilling (LWD) can extract P-wave and S-wave information from the formation. However, the transmission of the collar wave propagated directly from the emitter to the receiver may interfere with the P-wave and S-wave and affect the extraction of formation information. Therefore, it is necessary to design a suitable acoustic isolator between the transmitter and the receiver to attenuate the drill waves. The commonly used acoustic LWD isolator is that the outer surface of the drill collar is evenly grooved to attenuate the collar wave. However, there are still disadvantages such as the lack of mechanical strength of the evenly grooved acoustic insulators and the ability to extract clean longitudinal wave under certain circumstances. Therefore, there is an urgent requirement to design a new type of acoustic LWD isolator with sufficient strength and acoustic insulation requirements. In recent years, spoof surface acoustic waves (SSAWs) generated by periodic corrugated surface rigid plates have attracted the attention of many researchers, who can spatially separate the surface waves to attenuate acoustic waves. In this paper, a new type of acoustic LWD insulator based on SAW space separation structure is proposed. The finite element software ANSYS is used for acoustic analysis.
Style APA, Harvard, Vancouver, ISO itp.
10

KUROSAWA, Minoru. "Surface Acoustic Wave Motor". Journal of The Institute of Electrical Engineers of Japan 127, nr 5 (2007): 285–87. http://dx.doi.org/10.1541/ieejjournal.127.285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Letcher, S. "Surface acoustic wave devices". IEEE Journal of Oceanic Engineering 11, nr 4 (październik 1986): 487–88. http://dx.doi.org/10.1109/joe.1986.1145211.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kirigaya, Masahiro. "Surface Acoustic Wave Motor". Journal of the Acoustical Society of America 130, nr 5 (2011): 3175. http://dx.doi.org/10.1121/1.3662354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Vetelino, John F. "Surface acoustic wave microsensors." Journal of the Acoustical Society of America 99, nr 4 (kwiecień 1996): 2479–500. http://dx.doi.org/10.1121/1.415570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Nakahata, Hideaki. "Surface acoustic wave device". Journal of the Acoustical Society of America 101, nr 5 (1997): 2423. http://dx.doi.org/10.1121/1.418455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Satoh, Yoshio. "Surface acoustic wave filter". Journal of the Acoustical Society of America 101, nr 5 (1997): 2422. http://dx.doi.org/10.1121/1.418486.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Shiokawa, Showko, i Jun Kondoh. "Surface Acoustic Wave Sensors". Japanese Journal of Applied Physics 43, nr 5B (28.05.2004): 2799–802. http://dx.doi.org/10.1143/jjap.43.2799.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kando, Hajime. "Surface acoustic wave device". Journal of the Acoustical Society of America 122, nr 2 (2007): 696. http://dx.doi.org/10.1121/1.2771304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ozaki, Kyosuke. "Surface acoustic wave device". Journal of the Acoustical Society of America 122, nr 2 (2007): 697. http://dx.doi.org/10.1121/1.2771305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kidoh, Hideo. "Surface acoustic wave filter". Journal of the Acoustical Society of America 122, nr 2 (2007): 697. http://dx.doi.org/10.1121/1.2771306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Dwyer, Douglas F. G., i David E. Bower. "Surface acoustic wave accelerometer". Journal of the Acoustical Society of America 82, nr 1 (lipiec 1987): 409. http://dx.doi.org/10.1121/1.395489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Kando, Hajime. "Surface acoustic wave device". Journal of the Acoustical Society of America 124, nr 3 (2008): 1389. http://dx.doi.org/10.1121/1.2986167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Yoneya, Katsuro. "Surface acoustic wave element". Journal of the Acoustical Society of America 124, nr 6 (2008): 3364. http://dx.doi.org/10.1121/1.3047393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Kam, Chan Hin. "Surface acoustic wave device". Journal of the Acoustical Society of America 124, nr 6 (2008): 3365. http://dx.doi.org/10.1121/1.3047395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kadota, Michio. "Surface acoustic wave device". Journal of the Acoustical Society of America 125, nr 2 (2009): 1259. http://dx.doi.org/10.1121/1.3081327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kihara, Yoshikazu. "Surface acoustic wave device". Journal of the Acoustical Society of America 126, nr 2 (2009): 927. http://dx.doi.org/10.1121/1.3204322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lin, I.-Nan. "Surface acoustic wave substrate". Journal of the Acoustical Society of America 126, nr 2 (2009): 931. http://dx.doi.org/10.1121/1.3204337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Chen, Ga-Lane. "Surface acoustic wave device". Journal of the Acoustical Society of America 126, nr 5 (2009): 2831. http://dx.doi.org/10.1121/1.3262542.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Wachi, Hirotada. "Surface acoustic wave device". Journal of the Acoustical Society of America 126, nr 6 (2009): 3380. http://dx.doi.org/10.1121/1.3274272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kurosawa, Minoru, Takayuki Watanabe, Akira Futami i Toshiro Higuchi. "Surface acoustic wave atomizer". Sensors and Actuators A: Physical 50, nr 1-2 (sierpień 1995): 69–74. http://dx.doi.org/10.1016/0924-4247(96)80086-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Yeo, Leslie Y., i James R. Friend. "Surface Acoustic Wave Microfluidics". Annual Review of Fluid Mechanics 46, nr 1 (3.01.2014): 379–406. http://dx.doi.org/10.1146/annurev-fluid-010313-141418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Sinha, Bikash K., i Michel Gouilloud. "Surface acoustic wave sensors". Journal of the Acoustical Society of America 78, nr 5 (listopad 1985): 1932. http://dx.doi.org/10.1121/1.392695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Miura, Michio. "Surface acoustic wave device". Journal of the Acoustical Society of America 113, nr 4 (2003): 1782. http://dx.doi.org/10.1121/1.1572315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kando, Hajime, i Michio Kadota. "Surface acoustic wave device". Journal of the Acoustical Society of America 120, nr 2 (2006): 571. http://dx.doi.org/10.1121/1.2336648.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

da Cunha, Mauricio Pereira. "Surface acoustic wave sensor". Journal of the Acoustical Society of America 120, nr 5 (2006): 2397. http://dx.doi.org/10.1121/1.2395087.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Kadota, Michio. "Surface acoustic wave device". Journal of the Acoustical Society of America 120, nr 5 (2006): 2402. http://dx.doi.org/10.1121/1.2395109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Yamamoto, Koji. "Surface acoustic wave device". Journal of the Acoustical Society of America 120, nr 5 (2006): 2402. http://dx.doi.org/10.1121/1.2395110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Takamine, Yuichi. "Surface acoustic wave device". Journal of the Acoustical Society of America 120, nr 5 (2006): 2403. http://dx.doi.org/10.1121/1.2395114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kalantar-Zadeh, Kourosh, i Wojtek Wlodarski. "Surface acoustic wave sensor". Journal of the Acoustical Society of America 120, nr 5 (2006): 2409. http://dx.doi.org/10.1121/1.2395140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Bungo, Akihiro. "Surface acoustic wave device". Journal of the Acoustical Society of America 121, nr 1 (2007): 16. http://dx.doi.org/10.1121/1.2434272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Noguchi, Hitoshi, i Yoshihiro Kubota. "Surface acoustic wave device". Journal of the Acoustical Society of America 121, nr 4 (2007): 1834. http://dx.doi.org/10.1121/1.2723997.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nysen, Paul A., i Halvor Skeie. "Surface acoustic wave modulator". Journal of the Acoustical Society of America 121, nr 5 (2007): 2482. http://dx.doi.org/10.1121/1.2739145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kando, Hajime. "Surface acoustic wave device". Journal of the Acoustical Society of America 121, nr 5 (2007): 2482. http://dx.doi.org/10.1121/1.2739146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Yamanouchi, Kazuhiko. "Surface acoustic wave transducer". Journal of the Acoustical Society of America 121, nr 5 (2007): 2483. http://dx.doi.org/10.1121/1.2739147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Hada, Takuo. "Surface acoustic wave device". Journal of the Acoustical Society of America 121, nr 5 (2007): 2483. http://dx.doi.org/10.1121/1.2739148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Ding, Xiaoyun, Peng Li, Sz-Chin Steven Lin, Zackary S. Stratton, Nitesh Nama, Feng Guo, Daniel Slotcavage i in. "Surface acoustic wave microfluidics". Lab on a Chip 13, nr 18 (2013): 3626. http://dx.doi.org/10.1039/c3lc50361e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Avitabile, Gianfranco, Luca Roselli, Carlo Atzeni i Gianfranco Manes. "Surface acoustic wave resonators". European Transactions on Telecommunications 2, nr 5 (wrzesień 1991): 547–54. http://dx.doi.org/10.1002/ett.4460020512.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Shiokawa, Showko, i Jun Kondoh. "Surface acoustic wave microsensors". Electronics and Communications in Japan (Part II: Electronics) 79, nr 3 (1996): 42–50. http://dx.doi.org/10.1002/ecjb.4420790306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Das, P., A. V. Scholtz, A. J. Urillo, D. M. Litynski i D. Shklarsky. "Surface acoustic wave acousto‐electro‐optic effect". Applied Physics Letters 49, nr 16 (20.10.1986): 1016–18. http://dx.doi.org/10.1063/1.97457.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Li, Xu, Dominic Labanowski, Sayeef Salahuddin i Christopher S. Lynch. "Spin wave generation by surface acoustic waves". Journal of Applied Physics 122, nr 4 (28.07.2017): 043904. http://dx.doi.org/10.1063/1.4996102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Dierkes, M., i U. Hilleringmann. "Telemetric surface acoustic wave sensor for humidity". Advances in Radio Science 1 (5.05.2003): 131–33. http://dx.doi.org/10.5194/ars-1-131-2003.

Pełny tekst źródła
Streszczenie:
Abstract. Surface acoustic wave sensors consist of a piezoelectric substrate with metal interdigital transducers (IDT) on top. The acoustic waves are generated on the surface of the substrate by a radio wave, as it is well known in band pass filters. The devices can be used as wireless telemetric sensors for temperature and humidity, transmitting the sensed signal as a shift of the sensor’s resonance frequency.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii