Gotowa bibliografia na temat „SURF FEATURES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SURF FEATURES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SURF FEATURES"
Wang, Yin Tien, Chen Tung Chi i Ying Chieh Feng. "Robot Simultaneous Localization and Mapping Using Speeded-Up Robust Features". Applied Mechanics and Materials 284-287 (styczeń 2013): 2142–46. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.2142.
Pełny tekst źródłaWang, Yin-Tien, i Guan-Yu Lin. "Improvement of speeded-up robust features for robot visual simultaneous localization and mapping". Robotica 32, nr 4 (2.09.2013): 533–49. http://dx.doi.org/10.1017/s0263574713000830.
Pełny tekst źródłaBay, Herbert, Andreas Ess, Tinne Tuytelaars i Luc Van Gool. "Speeded-Up Robust Features (SURF)". Computer Vision and Image Understanding 110, nr 3 (czerwiec 2008): 346–59. http://dx.doi.org/10.1016/j.cviu.2007.09.014.
Pełny tekst źródłaPandey, Ramesh Chand, Sanjay Kumar Singh i K. K. Shukla. "Passive Copy- Move Forgery Detection Using Speed-Up Robust Features, Histogram Oriented Gradients and Scale Invariant Feature Transform". International Journal of System Dynamics Applications 4, nr 3 (lipiec 2015): 70–89. http://dx.doi.org/10.4018/ijsda.2015070104.
Pełny tekst źródła.M, Suresha, i Sandeep. "Recognition of Birds in Blurred and Illumination Images by Local Features". International Journal of Advanced Research in Computer Science and Software Engineering 7, nr 7 (30.07.2017): 243. http://dx.doi.org/10.23956/ijarcsse/v7i7/0128.
Pełny tekst źródłaShukla, Tuhin, Nishchol Mishra i Sanjeev Sharma. "Automatic Image Annotation using SURF Features". International Journal of Computer Applications 68, nr 4 (18.04.2013): 17–24. http://dx.doi.org/10.5120/11567-6868.
Pełny tekst źródłaTabuse, Masayoshi, Toshiki Kitaoka i Dai Nakai. "Outdoor autonomous navigation using SURF features". Artificial Life and Robotics 16, nr 3 (grudzień 2011): 356–60. http://dx.doi.org/10.1007/s10015-011-0950-8.
Pełny tekst źródłaPuyda, Volodymyr. "Surf Features Extraction in a Computer Vision System". Advances in Cyber-Physical Systems 2, nr 1 (28.03.2017): 29–31. http://dx.doi.org/10.23939/acps2017.01.029.
Pełny tekst źródłaJhan, J. P., i J. Y. Rau. "A NORMALIZED SURF FOR MULTISPECTRAL IMAGE MATCHING AND BAND CO-REGISTRATION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (4.06.2019): 393–99. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-393-2019.
Pełny tekst źródłaJing Zhao, Jing Zhao. "Sports Motion Feature Extraction and Recognition Based on a Modified Histogram of Oriented Gradients with Speeded Up Robust Features". 電腦學刊 33, nr 1 (luty 2022): 063–70. http://dx.doi.org/10.53106/199115992022023301007.
Pełny tekst źródłaRozprawy doktorskie na temat "SURF FEATURES"
Jurgensen, Sean M. "The rotated speeded-up robust features algorithm (R-SURF)". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42653.
Pełny tekst źródłaIncludes supplemental materials
Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features (SURF) algorithm are examined in this research. We evaluate the SURF algorithm to identify possible areas for improvement in the performance. A proposed alternative to the SURF detector is proposed called rotated SURF (R-SURF). This method utilizes filters that are rotated 45 degrees counter-clockwise, and this modification is tested with standard detector testing methods against the regular SURF detector. Performance testing shows that the R-SURF outperforms the regular SURF detector when subject to image blurring, illumination changes and compression. Based on the testing results, the R-SURF detector outperforms regular SURF slightly when subjected to affine (viewpoint) changes. For image scale and rotation transformations, R-SURF outperforms for very small transformation values, but the regular SURF algorithm performs better for larger variations. The application of this research in the larger recognition process is also discussed.
Brykt, Andreas. "A testbed for distributed detection ofkeypoints and extraction of descriptors forthe Speeded-Up-Robust-Features (SURF)algorithm". Thesis, KTH, Kommunikationsnät, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141475.
Pełny tekst źródłaMedeiros, Petr?cio Ricardo Tavares de. "Multifoveamento em multirresolu??o com f?veas m?veis". PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA EL?TRICA E DE COMPUTA??O, 2016. https://repositorio.ufrn.br/jspui/handle/123456789/22258.
Pełny tekst źródłaApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-15T22:29:35Z (GMT) No. of bitstreams: 1 PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5)
Made available in DSpace on 2017-03-15T22:29:35Z (GMT). No. of bitstreams: 1 PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5) Previous issue date: 2016-07-20
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES)
O foveamento ? uma t?cnica de vis?o computacional capaz de promover a redu??o da informa??o visual atrav?s de uma transforma??o da imagem, em dom?nio espacial, para o dom?nio de multirresolu??o. Entretanto, esta t?cnica se limita a uma ?nica f?vea com mobilidade dependente do contexto. Neste trabalho s?o propostas a defini??o e a constru??o de um modelo multifoveado denominado MMMF (multifoveamento em multirresolu??o com f?veas m?veis) baseado em um modelo anterior denominado MMF (multirresolu??o com f?vea m?vel). Em um contexto de m?ltiplas f?veas, a aplica??o de v?rias estruturas MMF, uma para cada f?vea, resulta em um consider?vel aumento de processamento, uma vez que h? interse??es entre regi?es de estruturas distintas, as quais s?o processadas m?ltiplas vezes. Dadas as estruturas de f?veas MMF, propomos um algoritmo para obter regi?es disjuntas que devem ser processadas, evitando regi?es redundantes e, portanto, reduzindo o tempo de processamento. Experimentos s?o propostos para validar o modelo e verificar a sua aplicabilidade no contexto de vis?o computacional. Resultados demonstram o ganho em termos de tempo de processamento do modelo proposto em rela??o ao uso de m?ltiplas f?veas do modelo MMF.
Foveation is a computer vision technique for visual information reduction obtained by applying an image transformation in the spatial domain to the multiresolution domain. However, this technique is limited to a single fovea context-dependent mobility. This work proposes the definition and the construction of a multifoveated model called MMMF (Multiresolution Multifoveation using Mobile Foveae) based on an earlier model called MMF (Multiresolution with Moving Fovea). In the context of multiple foveae, the application of various MMF structures, one for each fovea, results in an increase in processing time, since there are intersections between regions of different structures, which are processed multiple times. Given MMF structures, an algorithm in order to get disjoint regions which are to be processed is proposed, avoiding redundant regions and thereby reducing the processing time. Experiments are proposed to validate the model and to verify its applicability in the computer vision context. Results show the gain in processing time of the proposed model compared to the use of multiple MMF structures.
Zavalina, Viktoriia. "Identifikace objektů v obraze". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220364.
Pełny tekst źródłaSaad, Elhusain Salem. "Defocus Blur-Invariant Scale-Space Feature Extractions". University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1418907974.
Pełny tekst źródłaVeľas, Martin. "Automatické třídění fotografií podle obsahu". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236399.
Pełny tekst źródłaGonzález, Valenzuela Ricardo Eugenio 1984. "Linear dimensionality reduction applied to SIFT and SURF feature descriptors". [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275499.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-24T12:45:45Z (GMT). No. of bitstreams: 1 GonzalezValenzuela_RicardoEugenio_M.pdf: 22940228 bytes, checksum: 972bc5a0fac686d7eda4da043bbd61ab (MD5) Previous issue date: 2014
Resumo: Descritores locais robustos normalmente compõem-se de vetores de características de alta dimensionalidade para descrever atributos discriminativos em imagens. A alta dimensionalidade de um vetor de características implica custos consideráveis em termos de tempo computacional e requisitos de armazenamento afetando o desempenho de várias tarefas que utilizam descritores de características, tais como correspondência, recuperação e classificação de imagens. Para resolver esses problemas, pode-se aplicar algumas técnicas de redução de dimensionalidade, escencialmente, construindo uma matrix de projeção que explique adequadamente a importancia dos dados em outras bases. Esta dissertação visa aplicar técnicas de redução linear de dimensionalidade aos descritores SIFT e SURF. Seu principal objetivo é demonstrar que, mesmo com o risco de diminuir a precisão dos vetores de caraterísticas, a redução de dimensionalidade pode resultar em um equilíbrio adequado entre tempo computacional e recursos de armazenamento. A redução linear de dimensionalidade é realizada por meio de técnicas como projeções aleatórias (RP), análise de componentes principais (PCA), análise linear discriminante (LDA) e mínimos quadrados parciais (PLS), a fim de criar vetores de características de menor dimensão. Este trabalho avalia os vetores de características reduzidos em aplicações de correspondência e de recuperação de imagens. O tempo computacional e o uso de memória são medidos por comparações entre os vetores de características originais e reduzidos
Abstract: Robust local descriptors usually consist of high dimensional feature vectors to describe distinctive characteristics of images. The high dimensionality of a feature vector incurs into considerable costs in terms of computational time and storage requirements, which affects the performance of several tasks that employ feature vectors, such as matching, image retrieval and classification. To address these problems, it is possible to apply some dimensionality reduction techniques, by building a projection matrix which explains adequately the importance of the data in other basis. This dissertation aims at applying linear dimensionality reduction to SIFT and SURF descriptors. Its main objective is to demonstrate that, even risking to decrease the accuracy of the feature vectors, the dimensionality reduction can result in a satisfactory trade-off between computational time and storage. We perform the linear dimensionality reduction through Random Projections (RP), Independent Component Analysis (ICA), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Partial Least Squares (PLS) in order to create lower dimensional feature vectors. This work evaluates such reduced feature vectors in a matching application, as well as their distinctiveness in an image retrieval application. The computational time and memory usage are then measured by comparing the original and the reduced feature vectors. OBSERVAÇÃONa segunda folha, do arquivo em anexo, o meu nome tem dois pequenos erros
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Grünseisen, Vojtěch. "Vyhledávání graffiti tagů podle podobnosti". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236413.
Pełny tekst źródłaStefanik, Kevin Vincent. "Sequential Motion Estimation and Refinement for Applications of Real-time Reconstruction from Stereo Vision". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76802.
Pełny tekst źródłaMaster of Science
Hubený, Marek. "Koncepty strojového učení pro kategorizaci objektů v obrazu". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316388.
Pełny tekst źródłaKsiążki na temat "SURF FEATURES"
Argentina) Ventana Sur (2019 (Buenos Aires. Ventana Sur 2019: Film guide. Buenos Aires: Instituto Nacional de Cine y Artes Audiovisuales. INCAA, 2019.
Znajdź pełny tekst źródłaCompassion focused therapy: Distinctive features. Hove: Routledge, 2010.
Znajdź pełny tekst źródłaGilbert, Paul. Compassion focused therapy: Distinctive features. Hove: Routledge, 2010.
Znajdź pełny tekst źródłaGagnon, François. Données sur l'économie du scénario au Québec pour le long métrage de fiction: Répertoire 1968-2000. Montréal: Centre de recherche cinéma/réception de l'Université de Montréal, 2002.
Znajdź pełny tekst źródłaCanada. Feature Film Advisory Committee. The road to success : report of the Feature Film Advisory Committee =: La voie du succès : rapport du Comité consultatif sur le long métrage. Ottawa, Ont: Canadian Heritage = Patrimoine canadien, 1999.
Znajdź pełny tekst źródłaWilliams, H. Major structural features of southeastern Canada and the Atlantic Continental Margin portrayed in regional gravity and magnetic maps =: Principaux éléments structuraux du sud-est du Canada et de la marge continentale de l'Atlantique tels que représentés sur des cartes gravimétriques et magnétiques régionales. Ottawa, Ont: Geological Survey of Canada = Commission géologique du Canada, 1994.
Znajdź pełny tekst źródłaGoogle Chrome Browser User Guide for Beginners and Seniors: Learn and Master How to Use Google Chrome Browser to Surf the Internet, Setup and Use All Modern Chrome Features from Basic to Advance. Independently Published, 2022.
Znajdź pełny tekst źródłaCrane, Rebecca. Mindfulness-Based Cognitive Therapy: Distinctive Features. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaMindfulness-Based Cognitive Therapy: Distinctive Features. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaCrane, Rebecca. Mindfulness-Based Cognitive Therapy: Distinctive Features. Taylor & Francis Group, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "SURF FEATURES"
Bay, Herbert, Tinne Tuytelaars i Luc Van Gool. "SURF: Speeded Up Robust Features". W Computer Vision – ECCV 2006, 404–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11744023_32.
Pełny tekst źródłaSouza, Luis, Christian Hook, João P. Papa i Christoph Palm. "Barrett’s Esophagus Analysis Using SURF Features". W Informatik aktuell, 141–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54345-0_34.
Pełny tekst źródłaSrinivas, Badrinath G., i Phalguni Gupta. "Palmprint Based Verification System Using SURF Features". W Communications in Computer and Information Science, 250–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03547-0_24.
Pełny tekst źródłaFu, Jing, Xiaojun Jing, Songlin Sun, Yueming Lu i Ying Wang. "C-SURF: Colored Speeded Up Robust Features". W Trustworthy Computing and Services, 203–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35795-4_26.
Pełny tekst źródłaShwetha, S., Sunanda Dixit i B. I. Khondanpur. "Person Recognition Using Surf Features and Vola-Jones Algorithm". W Advances in Intelligent Systems and Computing, 537–43. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3156-4_56.
Pełny tekst źródłaM’hiri, Faten, Claudia Chevrefils i Jean-Philippe Sylvestre. "Quality Assessment of Retinal Hyperspectral Images Using SURF and Intensity Features". W Lecture Notes in Computer Science, 118–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66185-8_14.
Pełny tekst źródłaZhang, Nan. "Computing Parallel Speeded-Up Robust Features (P-SURF) via POSIX Threads". W Emerging Intelligent Computing Technology and Applications, 287–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04070-2_33.
Pełny tekst źródłaPandey, Ramesh Chand, Rishabh Agrawal, Sanjay Kumar Singh i K. K. Shukla. "Passive Copy Move Forgery Detection Using SURF, HOG and SIFT Features". W Advances in Intelligent Systems and Computing, 659–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11933-5_74.
Pełny tekst źródłaBatur, Aliya, Patigul Mamat, Wenjie Zhou, Yali Zhu i Kurban Ubul. "Complex Printed Uyghur Document Image Retrieval Based on Modified SURF Features". W Pattern Recognition and Computer Vision, 99–111. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03338-5_9.
Pełny tekst źródłaShah, Munir, Jeremiah Deng i Brendon Woodford. "Illumination Invariant Background Model Using Mixture of Gaussians and SURF Features". W Computer Vision - ACCV 2012 Workshops, 308–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37410-4_27.
Pełny tekst źródłaStreszczenia konferencji na temat "SURF FEATURES"
Du, Geng, Fei Su i Anni Cai. "Face recognition using SURF features". W Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, redaktorzy Mingyue Ding, Bir Bhanu, Friedrich M. Wahl i Jonathan Roberts. SPIE, 2009. http://dx.doi.org/10.1117/12.832636.
Pełny tekst źródłaIgnat, Anca, i Ioan Păvăloi. "Occluded Iris Recognition using SURF Features". W 16th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010255405080515.
Pełny tekst źródłaDeshmukh, Jyoti, i Udhav Bhosle. "SURF features based classifiers for mammogram classification". W 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2017. http://dx.doi.org/10.1109/wispnet.2017.8299734.
Pełny tekst źródłaLv, Di, Yunfu Deng, Zhihao Li, Qujiang Lei, Bo Liang, Jie Xu i Xiuhao Li. "Advanced SURF Features Based Flexible Object Detection". W 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019. http://dx.doi.org/10.1109/robio49542.2019.8961377.
Pełny tekst źródłaPancham, Ardhisha, Daniel Withey i Glen Bright. "Tracking image features with PCA-SURF descriptors". W 2015 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE, 2015. http://dx.doi.org/10.1109/mva.2015.7153206.
Pełny tekst źródłaRabbani, Golam Shams, Sharmin Sultana, Md Nazmul Hasan, Salem Quddus Fahad i Jia Uddin. "Person identification using SURF features of dental radiograph". W the 3rd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3309074.3309115.
Pełny tekst źródłaKarthik, R., A. AnnisFathima i V. Vaidehi. "Panoramic view creation using invariant momentsand SURF features". W 2013 Third International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2013. http://dx.doi.org/10.1109/icrtit.2013.6844233.
Pełny tekst źródłaGigaud, Guillaume, i Pierre Moulin. "Traitor-tracing aided by compressed SURF image features". W 2010 44th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2010. http://dx.doi.org/10.1109/ciss.2010.5464707.
Pełny tekst źródłaAlfadhli, Fares Hasan Obaid, Ali Afzalian Mand, Md Shohel Sayeed, Kok Swee Sim i Mundher Al-Shabi. "Classification of tuberculosis with SURF spatial pyramid features". W 2017 International Conference on Robotics, Automation and Sciences (ICORAS). IEEE, 2017. http://dx.doi.org/10.1109/icoras.2017.8308044.
Pełny tekst źródłaCui, Kai, Hua Cai, Yao Zhang i Huan Chen. "A face alignment method based on SURF features". W 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. http://dx.doi.org/10.1109/cisp-bmei.2017.8301964.
Pełny tekst źródłaRaporty organizacyjne na temat "SURF FEATURES"
Michaels, Michelle, Theodore Letcher, Sandra LeGrand, Nicholas Webb i Justin Putnam. Implementation of an albedo-based drag partition into the WRF-Chem v4.1 AFWA dust emission module. Engineer Research and Development Center (U.S.), styczeń 2021. http://dx.doi.org/10.21079/11681/42782.
Pełny tekst źródłaLeGrand, Sandra, Theodore Letcher, Gregory Okin, Nicholas Webb, Alex Gallagher, Saroj Dhital, Taylor Hodgdon, Nancy Ziegler i Michelle Michaels. Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1. Engineer Research and Development Center (U.S.), maj 2023. http://dx.doi.org/10.21079/11681/47116.
Pełny tekst źródłaBabenko, Oksana. Ідеї екуменізму в публіцистиці митрополита Андрея Шептицького: сучасне прочитання. Ivan Franko National University of Lviv, marzec 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11717.
Pełny tekst źródła