Artykuły w czasopismach na temat „Suppressive myeloid cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Suppressive myeloid cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Van Valckenborgh, Els, Jo Van Ginderachter, Kiavash Movahedi, Eline Menu i Karin Vanderkerken. "Myeloid-Derived Suppressor Cells in Multiple Myeloma." Blood 114, nr 22 (20.11.2009): 2794. http://dx.doi.org/10.1182/blood.v114.22.2794.2794.
Pełny tekst źródłaJoseph, Ann Mary, Dominique Parker, Tarik Hawkins, Nicholas Ciavattone i Eduardo Davila. "TLR-stimulated T cells acquire resistance to MDSC mediated suppression". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 205.15. http://dx.doi.org/10.4049/jimmunol.198.supp.205.15.
Pełny tekst źródłaParker, Katherine, i Suzanne Ostrand-Rosenberg. "HMGB1: a regulator of myeloid-derived suppressor cell potency? (66.37)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 66.37. http://dx.doi.org/10.4049/jimmunol.186.supp.66.37.
Pełny tekst źródłaDu, Hong, Xinchun Ding i Cong Yan. "Metabolic reprogramming of myeloid-derived suppressive cells". Oncoscience 4, nr 3-4 (28.04.2017): 29–30. http://dx.doi.org/10.18632/oncoscience.349.
Pełny tekst źródłaOliver, Liliana, Rydell Alvarez, Raquel Diaz, Anet Valdés, Sean H. Colligan, Michael J. Nemeth, Danielle Y. F. Twum i in. "Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator". Journal for ImmunoTherapy of Cancer 10, nr 9 (wrzesień 2022): e004710. http://dx.doi.org/10.1136/jitc-2022-004710.
Pełny tekst źródłaFrosch, Jennifer, Ilia Leontari i John Anderson. "Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment". Cancers 13, nr 7 (6.04.2021): 1743. http://dx.doi.org/10.3390/cancers13071743.
Pełny tekst źródłaTakacs, Gregory, Christian Kreiger, Defang Luo, Guimei Tian, Loic Deleyrolle i Jeffrey Harrison. "IMMU-21. GLIOMA-DERIVED FACTORS RECRUIT AND INDUCE AN IMMUNE SUPPRESSIVE PHENOTYPE IN BONE MARROW-DERIVED CCR2+ MYELOID CELLS". Neuro-Oncology 24, Supplement_7 (1.11.2022): vii135—vii136. http://dx.doi.org/10.1093/neuonc/noac209.519.
Pełny tekst źródłaTopal Gorgun, Gullu, Hiroto Ohguchi, Teru Hideshima, Yu-Tzu Tai, Noopur Raje, Nikhil C. Munshi, Paul G. Richardson, Jacob P. Laubach i Kenneth C. Anderson. "Inhibition Of Myeloid Derived Suppressor Cells (MDSC) In The Multiple Myeloma Bone Marrow Microenvironment". Blood 122, nr 21 (15.11.2013): 3089. http://dx.doi.org/10.1182/blood.v122.21.3089.3089.
Pełny tekst źródłaPetersson, Julia, Sandra Askman, Åsa Pettersson, Stina Wichert, Thomas Hellmark, Åsa C. M. Johansson i Markus Hansson. "Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity". Journal of Immunology Research 2021 (6.08.2021): 1–10. http://dx.doi.org/10.1155/2021/6344344.
Pełny tekst źródłaD’Amico, Lucia, Sahil Mahajan, Aude-Hélène Capietto, Zhengfeng Yang, Ali Zamani, Biancamaria Ricci, David B. Bumpass i in. "Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer". Journal of Experimental Medicine 213, nr 5 (4.04.2016): 827–40. http://dx.doi.org/10.1084/jem.20150950.
Pełny tekst źródłaSinha, Pratima, i Suzanne Ostrand-Rosenberg. "Withaferin A, a potent and abundant component of Withania somnifera root extract, reduces myeloid-derived suppressor cell function (P2103)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 170.8. http://dx.doi.org/10.4049/jimmunol.190.supp.170.8.
Pełny tekst źródłaMatta, Benjamin, Brian Rosborough, Lisa Mathews, Quan Liu, Dalia Raich-Regue, Thomson Angus i Heth Turnquist. "Conditional STAT3-deficiency augments Flt3 ligand-driven myeloid-derived suppressor cell expansion but limits their suppressor function (IRM7P.487)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 126.12. http://dx.doi.org/10.4049/jimmunol.192.supp.126.12.
Pełny tekst źródłaJung, Minho, i Eun Young Choi. "TLR5 and TLR7 amplify different stage of myeloid cells". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 126.40. http://dx.doi.org/10.4049/jimmunol.202.supp.126.40.
Pełny tekst źródłaDong, Juan, Cassandra Gilmore, Hieu Ta, Keman Zhang, Sarah Stone i Li Wang. "501 VISTA regulates the differentiation and suppressive function of myeloid-derived suppressor cells". Journal for ImmunoTherapy of Cancer 8, Suppl 3 (listopad 2020): A536. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0501.
Pełny tekst źródłaXiong, Jia, Hui Wang i Qingqing Wang. "Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment". Advanced Biology 5, nr 3 (11.02.2021): 1900311. http://dx.doi.org/10.1002/adbi.201900311.
Pełny tekst źródłaZeng, Dong, Haixia Long i Bo Zhu. "Antitumor effects of targeting myeloid-derived suppressive cells". Translational Cancer Research 9, nr 9 (wrzesień 2020): 5787–97. http://dx.doi.org/10.21037/tcr.2020.01.52.
Pełny tekst źródłaChen, Siqi, Yi Zhang i Bin Zhang. "MicroRNA-155 regulates tumor myeloid-derived suppressive cells". Oncoscience 2, nr 11 (19.11.2015): 910–11. http://dx.doi.org/10.18632/oncoscience.269.
Pełny tekst źródłaSica, Antonio, Laura Strauss, Francesca Maria Consonni, Cristina Travelli, Armando Genazzani i Chiara Porta. "Metabolic regulation of suppressive myeloid cells in cancer". Cytokine & Growth Factor Reviews 35 (czerwiec 2017): 27–35. http://dx.doi.org/10.1016/j.cytogfr.2017.05.002.
Pełny tekst źródłaFilipazzi, P., R. Valenti, V. Huber, M. Iero, L. Pilla, G. Parmiani, M. Santinami i L. Rivoltini. "Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients and modulation by GM-CSF-based anti-tumor vaccine". Journal of Clinical Oncology 25, nr 18_suppl (20.06.2007): 21082. http://dx.doi.org/10.1200/jco.2007.25.18_suppl.21082.
Pełny tekst źródłaPassioura, Toby, Alla Dolnikov, Sylvie Shen i Geoff Symonds. "N-Ras–Induced Growth Suppression of Myeloid Cells Is Mediated by IRF-1". Cancer Research 65, nr 3 (1.02.2005): 797–804. http://dx.doi.org/10.1158/0008-5472.797.65.3.
Pełny tekst źródłaHaverkamp., Jessica, i Timothy Ratliff. "Regulatory function of myeloid-derived suppressor cells is restricted to inflammatory site. (98.25)". Journal of Immunology 184, nr 1_Supplement (1.04.2010): 98.25. http://dx.doi.org/10.4049/jimmunol.184.supp.98.25.
Pełny tekst źródłaThakuri, Bal Krishna Chand, Jinyu Zhang, Juan Zhao, Lam N. Nguyen, Lam N. T. Nguyen, Madison Schank, Sushant Khanal i in. "HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3–miR124 Axis". Cells 9, nr 12 (18.12.2020): 2715. http://dx.doi.org/10.3390/cells9122715.
Pełny tekst źródłaCharles, Julia, Lih-Yun Hsu, Erene Niemi, Arthur Weiss i Mary Nakamura. "CD11blo Gr1+ osteoclast precursors are increased in inflammatory arthritis and have myeloid derived suppressor cell function. (148.1)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 148.1. http://dx.doi.org/10.4049/jimmunol.186.supp.148.1.
Pełny tekst źródłaAykut, Berk, Ruonan Chen, Jacqueline I. Kim, Dongling Wu, Sorin A. A. Shadaloey, Raquel Abengozar, Pamela Preiss i in. "Targeting Piezo1 unleashes innate immunity against cancer and infectious disease". Science Immunology 5, nr 50 (21.08.2020): eabb5168. http://dx.doi.org/10.1126/sciimmunol.abb5168.
Pełny tekst źródłaTakacs, Gregory P., Julia S. Garcia, Caitlyn A. Hodges, Christian J. Kreiger, Alexandra Sherman i Jeffrey K. Harrison. "CSF1R Ligands Expressed by Murine Gliomas Promote M-MDSCs to Suppress CD8+ T Cells in a NOS-Dependent Manner". Cancers 16, nr 17 (1.09.2024): 3055. http://dx.doi.org/10.3390/cancers16173055.
Pełny tekst źródłaRajan, Priyanka, Robert Zollo, Mackenzie Lieberman, Yanqi Guo, Mohammed Alruwaili, Mohammed Alqarni, Brian Morreale i in. "Abstract 5536: The role of p38 MAPK in the tumor-induced immune suppressive microenvironment in metastatic breast cancer". Cancer Research 84, nr 6_Supplement (22.03.2024): 5536. http://dx.doi.org/10.1158/1538-7445.am2024-5536.
Pełny tekst źródłaWieboldt, Ronja, Andreas Zingg, Emanuele Carlini, Anastasiya Börsch, Heinz Läubli i Natalia Rodrigues Manutano. "Abstract 1259: Disturbing the Siglec-Sialoglycan axis to target myeloid- derived suppressor cells in the tumor microenvironment". Cancer Research 83, nr 7_Supplement (4.04.2023): 1259. http://dx.doi.org/10.1158/1538-7445.am2023-1259.
Pełny tekst źródłaAntignano, Frann, Melisa Hamilton, Carla Cohen, Victor Ho i Gerald Krystal. "SHIP-deficient dendritic cells suppress T cell proliferation via a nitric oxide independent mechanism (91.9)". Journal of Immunology 182, nr 1_Supplement (1.04.2009): 91.9. http://dx.doi.org/10.4049/jimmunol.182.supp.91.9.
Pełny tekst źródłaCornelissen, Lenneke A. M., Kim C. M. Santegoets, Esther D. Kers-Rebel, Sandra A. J. F. H. Bossmann, Mark Ter Laan, Daniel Granado i Gosse J. Adema. "Glioma-Associated Sialoglycans Drive the Immune Suppressive Phenotype and Function of Myeloid Cells". Pharmaceutics 16, nr 7 (19.07.2024): 953. http://dx.doi.org/10.3390/pharmaceutics16070953.
Pełny tekst źródłaRui, Ke, Jie Tian, Yue Hong, Liwei Lu i Shengjun Wang. "Olfactory ecto-mesenchymal stem cells derived exosomes reverse the immunosuppressive capacity of myeloid-derived suppressor cells to ameliorates experimental Sjögren’s syndrome". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 238.11. http://dx.doi.org/10.4049/jimmunol.204.supp.238.11.
Pełny tekst źródłaSchroeder, Mark A., Julie Ritchey, Brian K. Dieckgraefe i John F. DiPersio. "Pegylated Murine GM-CSF Increases Myeloid Derived Suppressor Cells In Vivo". Blood 118, nr 21 (18.11.2011): 2967. http://dx.doi.org/10.1182/blood.v118.21.2967.2967.
Pełny tekst źródłaVance, Jordan K., Travis W. Rawson, Jessica M. Povroznik, Kathleen M. Brundage i Cory M. Robinson. "Myeloid-Derived Suppressor Cells Gain Suppressive Function during Neonatal Bacterial Sepsis". International Journal of Molecular Sciences 22, nr 13 (30.06.2021): 7047. http://dx.doi.org/10.3390/ijms22137047.
Pełny tekst źródłaShen, Li, i Roberto Pili. "Tasquinimod targets suppressive myeloid cells in the tumor microenvironment". OncoImmunology 8, nr 10 (7.05.2018): e1072672. http://dx.doi.org/10.1080/2162402x.2015.1072672.
Pełny tekst źródłaKumar, Vishnupriyan, Michael A. Giacomantonio i Shashi Gujar. "Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy". Viruses 13, nr 4 (10.04.2021): 654. http://dx.doi.org/10.3390/v13040654.
Pełny tekst źródłaAbdelfattah, Nourhan, Parveen Kumar, Caiyi Wang, Jia-Shiun Leu, David Baskin, William Flynn, Ruli Gao i in. "Abstract 5871: Pan-cancer myeloid cell analysis at the single cell level reveals the influence of distinct organ sites in myeloid cell phenotypes and support targeting S100A4 to reverse immune suppression". Cancer Research 83, nr 7_Supplement (4.04.2023): 5871. http://dx.doi.org/10.1158/1538-7445.am2023-5871.
Pełny tekst źródłaAnderson, Hannah, Gregory P. Takacs, Christian Kreiger, Defang Luo, Libin Rong, Jeffrey K. Harrison i Tracy Stepien. "209 A CTS Team Approach to Modeling Migration and Suppression of CCR2+/CX3CR1+ Myeloid Cells in Glioblastoma". Journal of Clinical and Translational Science 6, s1 (kwiecień 2022): 32. http://dx.doi.org/10.1017/cts.2022.111.
Pełny tekst źródłaPeñaloza, Hernán F., Janet S. Lee i Prabir Ray. "Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease". PLOS Pathogens 17, nr 9 (2.09.2021): e1009850. http://dx.doi.org/10.1371/journal.ppat.1009850.
Pełny tekst źródłaParker, Katherine, i Suzanne Ostrand-Osenberg. "Title: HMGB1 both enhances and blocks myeloid-derived suppressor cell potency Katherine H. Parker, Suzanne Ostrand-Rosenberg Department of Biological Sciences, University of Maryland Baltimore County, Baltimore MD 21250 (162.40)". Journal of Immunology 188, nr 1_Supplement (1.05.2012): 162.40. http://dx.doi.org/10.4049/jimmunol.188.supp.162.40.
Pełny tekst źródłaDing, Xinchun, Lingyan Wu, Cong Yan i Hong Du. "Establishment of lal-/- Myeloid Lineage Cell Line That Resembles Myeloid-Derived Suppressive Cells". PLOS ONE 10, nr 3 (25.03.2015): e0121001. http://dx.doi.org/10.1371/journal.pone.0121001.
Pełny tekst źródłaWang, Xiang-Yang, Huanfa Yi, Chunqing Guo i Xiaofei Yu. "Myeloid-derived suppressive cells enhance differentiation of Th17 cells in an IL-1β dependent manner (P1096)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 185.22. http://dx.doi.org/10.4049/jimmunol.190.supp.185.22.
Pełny tekst źródłaHou, Yu, Qi Feng, Miao Xu, Guo-sheng Li, Xue-na Liu, Zi Sheng, Hai Zhou i in. "High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia". Blood 127, nr 12 (24.03.2016): 1587–97. http://dx.doi.org/10.1182/blood-2015-10-674531.
Pełny tekst źródłaMiner, Samantha, Sawa Ito, Kazushi Tanimoto, Nancy F. Hensel, Fariba Chinian, Keyvan Keyvanfar, Christopher S. Hourigan i in. "Myeloid Leukemias Directly Suppress T Cell Proliferation Through STAT3 and Arginase Pathways". Blood 122, nr 21 (15.11.2013): 3885. http://dx.doi.org/10.1182/blood.v122.21.3885.3885.
Pełny tekst źródłaGriesinger, Andrea, Eric Prince, Andrew Donson, Kent Riemondy, Timothy Ritzman, Faith Harris, Vladimir Amani i in. "EPEN-22. SINGLE-CELL RNA SEQUENCING IDENTIFIES UPREGULATION OF IKZF1 IN PFA2 MYELOID SUBPOPULATION DRIVING AN ANTI-TUMOR PHENOTYPE". Neuro-Oncology 22, Supplement_3 (1.12.2020): iii312. http://dx.doi.org/10.1093/neuonc/noaa222.159.
Pełny tekst źródłaYao, G., S. Wang i L. Sun. "THU0226 MESENCHYMAL STEM CELL TRANSPLANTATION AMELIORATES EXPERIMENTAL SJÖGREN’S SYNDROME BY DOWNREGUALTING MDSCS VIA COX2/PGE2 PATHWAY". Annals of the Rheumatic Diseases 79, Suppl 1 (czerwiec 2020): 340.1–340. http://dx.doi.org/10.1136/annrheumdis-2020-eular.1391.
Pełny tekst źródłaSolito, Samantha, Erika Falisi, Claudia Marcela Diaz-Montero, Andrea Doni, Laura Pinton, Antonio Rosato, Samuela Francescato i in. "A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells". Blood 118, nr 8 (25.08.2011): 2254–65. http://dx.doi.org/10.1182/blood-2010-12-325753.
Pełny tekst źródłaOhayon, David E., Taylor R. Brooks, Sarah E. Mahl, Stacey A. Cranert i Stephen N. Waggoner. "Natural killer cells support myeloid suppressor cell expansion during persistent viral infection". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 78.36. http://dx.doi.org/10.4049/jimmunol.198.supp.78.36.
Pełny tekst źródłaVakana, Eliza, Jessica K. Altman, Heather Glaser, Nicholas J. Donato i Leonidas C. Platanias. "Antileukemic effects of AMPK activators on BCR-ABL–expressing cells". Blood 118, nr 24 (8.12.2011): 6399–402. http://dx.doi.org/10.1182/blood-2011-01-332783.
Pełny tekst źródłaPeretz, Tsuri, Yoav Pizem, Liat Iancovici, Ella Peled, Motti Hakim, Sharon Hashmueli, Ilana Mandel, Yair Sapir i Tehila Ben Moshe. "Abstract 3920: BND-35, a novel anti-ILT3 antibody for remodulation of the tumor microenvironment". Cancer Research 84, nr 6_Supplement (22.03.2024): 3920. http://dx.doi.org/10.1158/1538-7445.am2024-3920.
Pełny tekst źródłaGood, Logan, Brooke Benner i William E. Carson. "Bruton’s tyrosine kinase: an emerging targeted therapy in myeloid cells within the tumor microenvironment". Cancer Immunology, Immunotherapy 70, nr 9 (5.04.2021): 2439–51. http://dx.doi.org/10.1007/s00262-021-02908-5.
Pełny tekst źródłaGriesinger, Andrea, Kent Riemondy, Andrew Donson, Nicholas Willard, Eric Prince, Faith Harris, Vladimir Amani i in. "EPEN-07. SINGLE-CELL RNA SEQUENCING IDENTIFIES A UNIQUE MYELOID SUBPOPULATION ASSOCIATED WITH MESENCHYMAL TUMOR SUBPOPULATION IN POOR OUTCOME PEDIATRIC EPENDYMOMA". Neuro-Oncology 23, Supplement_1 (1.06.2021): i14—i15. http://dx.doi.org/10.1093/neuonc/noab090.057.
Pełny tekst źródła