Gotowa bibliografia na temat „Suppressive myeloid cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Suppressive myeloid cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Suppressive myeloid cells"
Van Valckenborgh, Els, Jo Van Ginderachter, Kiavash Movahedi, Eline Menu i Karin Vanderkerken. "Myeloid-Derived Suppressor Cells in Multiple Myeloma." Blood 114, nr 22 (20.11.2009): 2794. http://dx.doi.org/10.1182/blood.v114.22.2794.2794.
Pełny tekst źródłaJoseph, Ann Mary, Dominique Parker, Tarik Hawkins, Nicholas Ciavattone i Eduardo Davila. "TLR-stimulated T cells acquire resistance to MDSC mediated suppression". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 205.15. http://dx.doi.org/10.4049/jimmunol.198.supp.205.15.
Pełny tekst źródłaParker, Katherine, i Suzanne Ostrand-Rosenberg. "HMGB1: a regulator of myeloid-derived suppressor cell potency? (66.37)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 66.37. http://dx.doi.org/10.4049/jimmunol.186.supp.66.37.
Pełny tekst źródłaDu, Hong, Xinchun Ding i Cong Yan. "Metabolic reprogramming of myeloid-derived suppressive cells". Oncoscience 4, nr 3-4 (28.04.2017): 29–30. http://dx.doi.org/10.18632/oncoscience.349.
Pełny tekst źródłaOliver, Liliana, Rydell Alvarez, Raquel Diaz, Anet Valdés, Sean H. Colligan, Michael J. Nemeth, Danielle Y. F. Twum i in. "Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator". Journal for ImmunoTherapy of Cancer 10, nr 9 (wrzesień 2022): e004710. http://dx.doi.org/10.1136/jitc-2022-004710.
Pełny tekst źródłaFrosch, Jennifer, Ilia Leontari i John Anderson. "Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment". Cancers 13, nr 7 (6.04.2021): 1743. http://dx.doi.org/10.3390/cancers13071743.
Pełny tekst źródłaTakacs, Gregory, Christian Kreiger, Defang Luo, Guimei Tian, Loic Deleyrolle i Jeffrey Harrison. "IMMU-21. GLIOMA-DERIVED FACTORS RECRUIT AND INDUCE AN IMMUNE SUPPRESSIVE PHENOTYPE IN BONE MARROW-DERIVED CCR2+ MYELOID CELLS". Neuro-Oncology 24, Supplement_7 (1.11.2022): vii135—vii136. http://dx.doi.org/10.1093/neuonc/noac209.519.
Pełny tekst źródłaTopal Gorgun, Gullu, Hiroto Ohguchi, Teru Hideshima, Yu-Tzu Tai, Noopur Raje, Nikhil C. Munshi, Paul G. Richardson, Jacob P. Laubach i Kenneth C. Anderson. "Inhibition Of Myeloid Derived Suppressor Cells (MDSC) In The Multiple Myeloma Bone Marrow Microenvironment". Blood 122, nr 21 (15.11.2013): 3089. http://dx.doi.org/10.1182/blood.v122.21.3089.3089.
Pełny tekst źródłaPetersson, Julia, Sandra Askman, Åsa Pettersson, Stina Wichert, Thomas Hellmark, Åsa C. M. Johansson i Markus Hansson. "Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity". Journal of Immunology Research 2021 (6.08.2021): 1–10. http://dx.doi.org/10.1155/2021/6344344.
Pełny tekst źródłaD’Amico, Lucia, Sahil Mahajan, Aude-Hélène Capietto, Zhengfeng Yang, Ali Zamani, Biancamaria Ricci, David B. Bumpass i in. "Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer". Journal of Experimental Medicine 213, nr 5 (4.04.2016): 827–40. http://dx.doi.org/10.1084/jem.20150950.
Pełny tekst źródłaRozprawy doktorskie na temat "Suppressive myeloid cells"
Benner, Brooke Nicole. "Enhancing Immunotherapy for Cancer by Targeting Suppressive Myeloid cells". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1583766367545941.
Pełny tekst źródłaOrtiz, Myrna Lillian. "Immature Myeloid Cells Promote Tumor Formation Via Non-Suppressive Mechanism". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5089.
Pełny tekst źródłaCollazo, Ruiz Michelle Marie. "The Role of Tumor Suppressors, SHIP and Rb, in Immune Suppressive Cells". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4016.
Pełny tekst źródłaZwing, Natalie [Verfasser], Falk [Akademischer Betreuer] Nimmerjahn, Falk [Gutachter] Nimmerjahn i Gerhard [Gutachter] Krönke. "Spatial Distribution of Suppressive Myeloid Cells and Cytotoxic T Cells in Colorectal Cancer / Natalie Zwing ; Gutachter: Falk Nimmerjahn, Gerhard Krönke ; Betreuer: Falk Nimmerjahn". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/123423856X/34.
Pełny tekst źródłaBoyer, Thomas. "Impact des cellules myéloïdes immunosuppressives dans l’induction de cellules souches cancéreuses". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0221.
Pełny tekst źródłaThe tumor microenvironment is strongly influenced by myeloid cells, with macrophages, neutrophils, and monocytes being major representatives. Research over the past decades has shown that almost all tumors are infiltrated in myeloid cells, making it impossible for “cold” tumors to exist with respect to these cells. Moreover, results from numerous clinical studies focusing on the myeloid immune compartment clearly show that these cells are almost universally associated with poor clinical outcome in patients, motivating a better understanding of their biology and efforts to target them. However, a central question has long been to understand what determines the functions of these cells in cancer.During emergency myelopoiesis, pathological activation of myeloid progenitors gives rise to myeloid-derived suppressor cells (MDSC), a term that encompasses a group of immature cells with a common property: immunosuppression. Indeed, MDSC play a crucial role in regulating antitumor immune responses but also promote tumor progression through non-immunological mechanisms, such as influencing angiogenesis and the extracellular matrix, resistance to therapies, and the preparation of the pre-metastatic niche.The preparation of the pre-metastatic niche is essential for the emergence of metastases at distant sites from the primary tumor, the leading cause of cancer-related deaths. These metastases are initiated by a subpopulation of tumor cells with stem-like properties: cancer stem cells (CSC). These cells, also known as Tumor-Initiating cells (TIC), encompass a minor subpopulation within the tumor and are characterized by intrinsic properties such as self-renewal potential, asymmetric division, and the ability to induce a new, heterogeneous tumor. Highly plastic, CSC transition from one cellules state to another through the epithelial-to-mesenchymal transition (EMT) or its counterpart, the mesenchymal-to-epithelial transition (MET). Therefore, a better understanding and specific treatment strategies targeting CSC could transform clinical management and significantly improve patient survival rates.The complexity of the tumor microenvironment, reflected by the presence of numerous actors and their interactions, exerts strong selective pressure on cancer cells and provides a favorable environment for the growth of CSC. Furthermore, the clinical implications associated with the issues of MDSC and CSC drive the emergence of studies on their reciprocal interactions, but the limitations in detecting these two actors make the evaluation and understanding of their interaction mechanisms diffuse and incomplete.In this thesis, we studied the role of suppressive myeloid cells in the induction of cancer cells with stemness properties. We have shown Human Monocyte Derived Suppressive Cells (HuMoSC) generated in vitro, but also their murine and patient derived equivalent promoted the apparition of CSC. Our results have highlighted a stemness induction mediated through a direct cell-to-cell contact and involving membrane-bound TGF-β. Finally, transcriptomic study of myeloid and cancer cells allowed us to identify a subpopulation of myeloid cells, expressing the glycoprotein CD52, as responsible for the immunosuppressive properties and the plasticity of CSC towards a mesenchymal-like phenotype
Ricchetti, Giuseppe Antonio. "An examination of the suppression of IL-10 suppression of TNF in myeloid cells". Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427864.
Pełny tekst źródłaKo, Jennifer S. "Mechanism of Myeloid-Derived Suppressor Cell Accumulation in Cancer and Susceptibility to Reversal by Sunitinib". Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1259869673.
Pełny tekst źródłaCabbage, Sarah E. "Reversible regulatory T cell-mediated suppression of myelin basic protein-specific T cells /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5034.
Pełny tekst źródłaCorzo, Cesar Alexander. "Regulatory Mechanism of Myeloid Derived Suppressor Cell Activity". Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3561.
Pełny tekst źródłaTUMINO, NICOLA. "In HIV+ patients, Myeloid Derived Suppressor Cells induce T cell anergy by suppressing CD3ζ expression through ELF-1 inhibition". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/211078.
Pełny tekst źródłaCzęści książek na temat "Suppressive myeloid cells"
Derré, Laurent. "Myeloid-Derived Suppressive Cells in the Tumor Contexture". W Handbook of Cancer and Immunology, 1–18. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-030-80962-1_381-1.
Pełny tekst źródłaPapaioannou, Antonis Stylianos, Athina Boumpas, Miranta Papadopoulou, Aikaterini Hatzioannou, Themis Alissafi i Panayotis Verginis. "Measuring Suppressive Activity and Autophagy in Myeloid-Derived Suppressor Cells". W Methods in Molecular Biology, 85–98. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1060-2_9.
Pełny tekst źródłaMa, Ge, Ping-Ying Pan i Shu-Hsia Chen. "Myeloid-Derived Suppressive Cells and Their Regulatory Mechanisms in Cancer". W Innate Immune Regulation and Cancer Immunotherapy, 231–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9914-6_13.
Pełny tekst źródłaBueno, Valquiria, i Graham Pawelec. "Myeloid-Derived Suppressive Cells in Ageing and Age-Related Diseases". W Healthy Ageing and Longevity, 53–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87532-9_4.
Pełny tekst źródłaRodríguez, Paulo C., i Augusto C. Ochoa. "Arginine Metabolism, a Major Pathway for the Suppressive Function of Myeloid-Derived Suppressor Cells". W Tumor-Induced Immune Suppression, 369–86. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8056-4_13.
Pełny tekst źródłaSerafini, Paolo, i Vincenzo Bronte. "Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance". W Tumor-Induced Immune Suppression, 99–150. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8056-4_4.
Pełny tekst źródłaZilio, Serena, Giacomo Desantis, Mariacristina Chioda i Vincenzo Bronte. "Tumour-Induced Immune Suppression by Myeloid Cells". W Tumour-Associated Macrophages, 49–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0662-4_4.
Pełny tekst źródłaVlachou, Katerina, i Panayotis Verginis. "In Vitro Suppression of CD4+ T-Cell Responses by Murine and Human Myeloid-Derived Suppressor Cells". W Methods in Molecular Biology, 119–28. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8938-6_9.
Pełny tekst źródłaMicouin, Anne, i Brigitte Bauvois. "Expression of Dipeptidylpeptidase IV (DPP IV/CD26) Activity on Human Myeloid and B Lineage Cells, and Cell Growth Suppression by the Inhibition of DPP IV Activity". W Advances in Experimental Medicine and Biology, 201–5. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9613-1_26.
Pełny tekst źródłaOstrand-Rosenberg, Suzanne. "Immune Suppressive Myeloid-Derived Suppressor Cells in Cancer". W Encyclopedia of Immunobiology, 512–25. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-374279-7.17015-8.
Pełny tekst źródłaStreszczenia konferencji na temat "Suppressive myeloid cells"
Yan, Cong, Xinchun Ding, Lingyan Wu i Hong Du. "Abstract A12: Establishment of myeloid lineage cell line that resembles myeloid-derived suppressive cells". W Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-a12.
Pełny tekst źródłaMarx, M., S. Troschke-Meurer, M. Zumpe, H. Lode i N. Siebert. "Blockade of suppressive myeloid cells is effective against neuroblastoma". W 32. Jahrestagung der Kind-Philipp-Stiftung für pädiatrisch onkologische Forschung. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1687139.
Pełny tekst źródłaBouchkouj, Najat, Haiying Qin, Susana Galli, John Buckley, Joanna L. Meadors, Shannon Larabee, Crystall L. Mackall, Maria G. Tsokos i Terry J. Fry. "Abstract 1332: Pediatric sarcomas are infiltrated with myeloid derived suppressive cells". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1332.
Pełny tekst źródłaCondamine, Thomas C., Vinit Kumar i Dmitry I. Gabrilovich. "Abstract 3176: Linking suppressive activity and ER-Stress in Myeloid Derived Suppressor Cells". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3176.
Pełny tekst źródłaMarkowitz, Joseph, Taylor R. Brooks i William E. Carson. "Abstract 3663: Immune suppressive myeloid cells expansion in vitro requires a simulated tumor microenvironment". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3663.
Pełny tekst źródłaBodogai, Monica, Catalina Lee Chang i Arya Biragyn. "Abstract 3671: Myeloid-derived suppressive cells require education from tumor-evoked Bregs to mediate metastasis". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3671.
Pełny tekst źródłaBaugh, Aaron G., Edgar Gonzalez, Sabrina K. Zhong, Matthew B. Jacobo, Kaliya Acevedo, Jesse Kreger, Yingtong Liu, Adam L. MacLean i Evanthia T. Roussos Torres. "874 Epigenetic modulation of myeloid derived suppressor cells decreases suppressive signaling through the STAT3 pathway". W SITC 39th Annual Meeting (SITC 2024) Abstracts, A988. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.0874.
Pełny tekst źródłaTakacs, Gregory, Julia Garcia, Alexandra Sherman, Christian Kreiger, Defang Luo i Jeffrey Harrison. "987 Glioma-derived factors induce an immune suppressive phenotype in bone marrow-derived CCR2+ myeloid cells". W SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0987.
Pełny tekst źródłaMarkowitz, Joseph, Bonnie K. Paul, Taylor R. Brooks, Lai Wei, Jeff Pan, Katherine L. Martin, Eric Luedke i in. "Abstract 456: Immune-suppressive myeloid cells are induced during disease progression in patients with advanced pancreatic adenocarcinoma." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-456.
Pełny tekst źródłaHamilton, Melisa J., Momir Bosiljcic, Bryant T. Harbourne, Nancy E. LePard, Elizabeth C. Halvorsen, Ada Y. Kim, Judit P. Banath, Gerald Krystal i Kevin L. Bennewith. "Abstract A9: Immune suppressive myeloid cells induced by hypoxic mammary tumor cells persist after primary tumor resection and promote metastatic growth". W Abstracts: AACR Special Conference on Tumor Invasion and Metastasis - January 20-23, 2013; San Diego, CA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tim2013-a9.
Pełny tekst źródła