Gotowa bibliografia na temat „Supported metal catalyst”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Supported metal catalyst”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Supported metal catalyst"
Trigoura, Leslie, Yalan Xing i Bhanu P. S. Chauhan. "Recyclable Catalysts for Alkyne Functionalization". Molecules 26, nr 12 (9.06.2021): 3525. http://dx.doi.org/10.3390/molecules26123525.
Pełny tekst źródłaHauli, Latifah, Karna Wijaya i Ria Armunanto. "Preparation of Cr Metal Supported on Sulfated Zirconia Catalyst". Materials Science Forum 948 (marzec 2019): 221–27. http://dx.doi.org/10.4028/www.scientific.net/msf.948.221.
Pełny tekst źródłaMardwita, Mardwita, Eka Sri Yusmartini i Nidya Wisudawati. "Effects of Cobalt and Chromium Loadings to The Catalytic Activities of Supported Metal Catalysts in Methane Oxidation". Bulletin of Chemical Reaction Engineering & Catalysis 15, nr 1 (15.01.2020): 213–20. http://dx.doi.org/10.9767/bcrec.15.1.6320.213-220.
Pełny tekst źródłaMistri, Rajib, i Bidyapati Kumar. "Supported Transition Metal Catalysts for Organic Fine Chemical Synthesis: A Review". Asian Journal of Chemistry 33, nr 3 (2021): 489–98. http://dx.doi.org/10.14233/ajchem.2021.23025.
Pełny tekst źródłaHepburn, J. S. "EPMA/TEM characterization of a Pt/Al2O3 catalyst with a nonuniform internal distribution". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6.08.1989): 274–75. http://dx.doi.org/10.1017/s0424820100153348.
Pełny tekst źródłaPatil, Siddappa A., Shivaputra A. Patil i Renukadevi Patil. "Magnetic Nanoparticles Supported Carbene and Amine Based Metal Complexes in Catalysis". Journal of Nano Research 42 (lipiec 2016): 112–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.42.112.
Pełny tekst źródłaGökağaç, Gülsün, i Brendan J. Kennedy. "Carbon Supported Pt+Os Catalysts for Methanol Oxidation". Zeitschrift für Naturforschung B 57, nr 2 (1.02.2002): 193–201. http://dx.doi.org/10.1515/znb-2002-0211.
Pełny tekst źródłaYe, Ke, Ying Liu, Shubin Wu i Junping Zhuang. "Efficient catalytic liquefaction of organosolv lignin over transition metal supported on HZSM-5". BioResources 17, nr 2 (25.03.2022): 2275–95. http://dx.doi.org/10.15376/biores.17.2.2275-2295.
Pełny tekst źródłaSasaki, Teruyoshi, Yusuke Horino, Tadashi Ohtake, Kazufumi Ogawa i Yoshifumi Suzaki. "A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface". Catalysts 10, nr 5 (25.04.2020): 472. http://dx.doi.org/10.3390/catal10050472.
Pełny tekst źródłaMita, Yasuhiro. "Development of metal-supported catalyst." DENKI-SEIKO[ELECTRIC FURNACE STEEL] 61, nr 2 (1990): 124–35. http://dx.doi.org/10.4262/denkiseiko.61.124.
Pełny tekst źródłaRozprawy doktorskie na temat "Supported metal catalyst"
Widyaningrum, Rosalia Nugraheni. "Mesoporous silica-supported catalysts to enhance hydrogen production during cellulose pyrolysis". Thesis, The University of Sydney, 2011. https://hdl.handle.net/2123/28917.
Pełny tekst źródłaIwanow, Melanie [Verfasser], i Burkhard [Akademischer Betreuer] König. "Supported Metal Catalyst Preparation using Deep Eutectic Solvents / Melanie Iwanow ; Betreuer: Burkhard König". Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215905971/34.
Pełny tekst źródłaMin, Byoung Koun. "Scanning tunneling microscopic studies of SiO2 thin film supported metal nano-clusters". Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2737.
Pełny tekst źródłaKamiuchi, Naoto. "Studies on Nano-structures and Catalytic Activities of Oxide-supported Precious Metal Catalysts". 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120878.
Pełny tekst źródłaWang, Shengye. "Algal and alginate based beads and foams as sorbents for metal sorption and catalyst supports for 3-nitrophenol hydrogenation". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG001.
Pełny tekst źródłaThis work describes the synthesis of a series of materials based on alginate and algal biomass (AB); these materials have been designed under different shapes: beads and foams. Special processes have been developed for directly using the algal biomass (without adding other polymers) with the double objective of simple processing and environmentally-friendly manufacturing (reduced production of sub-products and without additional resources). These materials have been tested first for metal recovery for heavy metal decontamination (Pb(II) and Cu(II)) but also for the valorization of metals (platinum groups metals, PGMs: Pd(II) and Pt(IV)). These studies were performed investigating various operating conditions in order to evaluate sorption capacities and limiting steps but also to identify the processes to be used for improving sorption performance. The incorporation of poly(ethyleneimine), PEI, is a promising method for increasing the density of highly reactive groups (amine functions). Different processes have been tested: (a) the incorporation of particles of PEI crosslinked with glutaraldehyde (heterogeneous beads: ABA/PEI), and (b) the homogeneous grafting of PEI on alginate (followed by glutaraldehyde crosslinking) (HABA/PEI beads). Several techniques have been used for characterizing the sorption process and the structure of developed sorbents, including FTIR spectroscopy, SEM & SEM-EDX analysis. In a second step selected materials have been tested for supported catalysis using the simple reaction of hydrogenation of 3–nitrophenol (3-NP) as a test reaction. The results are structured in 3 parts successively developed: (a) synthesis of alginate, AB and AB/PEI beads and testing for sorption heavy metals and PGMs, (b) comparison of Pd(II) sorption properties of AB/PEI composite beads prepared by the homogeneous and the heterogeneous routes (and their application to supported catalytic tests), and (c) synthesis of highly porous foams (prepared by reaction of alginate with PEI) and the testing of Pd(II) sorption and Pd-supported catalysis (in fixed-bed reactor). While PEI hardly affects the sorption of heavy metals (due to direct interaction with carboxylic groups of alginate or algal biomass), the presence of PEI strongly improves metal binding in the case of PGMs (the protonated amine groups strongly bind chloro-anionic PGM species). All the sorbents have a preference for Pb(II) over Cu(II) and for Pd(II) over Pt(IV), especially for alginate and AB beads because the presence of PEI limits the selectivity of the material for Pb(II) and Pd(II). Both the sorption capacity and the stability of composite alginate/PEI beads were improved while using the homogeneous synthesis mode (the PEI polymer being homogeneously dispersed in the bead before glutaraldehyde crosslinking). The two supports (heterogeneous vs. homogeneous beads) loaded with Pd(II) and subsequently reduced gave comparable catalytic performance (lower than conventional catalysts) but the homogeneous mode improves the long-term stability. The conditioning of the catalytic support as a foam allows testing the catalytic reaction in fixed-bed system: the conditioning improves mass transfer properties compared to beads and the apparent rate constant is only slightly reduced after operating 30 cycles
CORVA, MANUEL. "Experimental modeling of nanostructured and single metal atom supported catalysts at close-to-ambient conditions". Doctoral thesis, Università degli Studi di Trieste, 2019. http://hdl.handle.net/11368/2991050.
Pełny tekst źródłaThis Thesis work deals with the growth and characterization of model nanostructured surface systems in ultra-high vacuum environment (UHV, <10−9 mbar) and with their evolution at near ambient pressure (NAP, 0.1 - 100 mbar) conditions. The investigations are performed with the aid of specific in situ techniques (IR-Vis SFG, NAP-XPS, etc.) in order to probe the structural, electronic, chemical and catalytic properties of the models. The latter span from ordered lattices of metal nanoparticles to 2D metallorganic crystals, where stabilized mono-metallic centers act as the active cores. These systems, based on single metal atom centers, represent the main topic of this manuscript and they will be referred to as Single Metal Atom Catalysts (SMAC). The discussion of the scientific findings will first focus on the evolution of graphene supported Pt nanoclusters in CO atmosphere, varying both surface temperature and CO pressure to test the stability of the nanostructures. As degradation of this nanosystem occurs at realistic reaction conditions, the attention was shifted to the design and synthesis of model SMAC systems, where the single metal atom is stabilized in a metallorganic cage, thus preventing structural degradation. A first, prototype SMAC model system consisted of a single layer of Nickel tetraphenyl porphyrins (Ni-TPPs) deposited on the Cu(100) surface. We proved that, following to NO exposure, a hyponitrite species (N2O2) readily forms at the Ni sites already at UHV conditions and is stable at room temperature. The NO conversion is observed only on the NiTPP monolayer interacting with the underlying copper surface, showing that the substrate plays a major role, governing the properties of the nanostructured system through trans-effects associated with a strong surface-to-molecule charge transfer. A single Iron Phthalocyanine (FePc) layer was instead considered for a model carbonylation reaction. The metalorganic molecules were deposited both on a single foil of graphene, grown on the Ir(111) surface (FePc/GR), and on an alumina ultra-thin film, grown on the Ni3Al(111) surface (FePc/alumina). In both cases, we exploited CO adsorption to probe the molecular active sites. On the FePc/GR layer, IR-Vis SFG evidenced unexpected CO stretching modes in 1-10 mbar CO at 300 K. We ascribe the observed vibrational features to the production of long-lived molecular excitons (induced by the visible radiation). The long lifetime of these excitons and their efficient production through singlet-fission mechanisms represent intriguing findings for innovative organic devices for solar energy conversion. We also investigated the interaction of the same system with gas-phase CO2 We found that oxidation of the underlying graphene support yields the control of the charge transfer to the active sites, thus reducing the threshold pressure for CO2 adsorption and activation at 300 K by at least two orders of magnitude. As CO2 catalytic conversion is hindered by its low reactivity, enhancing its adsorption to metal sites is crucial in the framework of the efficient conversion of this waste gas to valuable chemicals. A practical route to alter the mesoscopic properties of the single metal atom centers has been found, and in parallel we proved a novel graphene oxidation route employing molecular oxygen at near ambient pressure. Concerning instead the FePc/alumina film, we demonstrated that decoration by Cu nanoclusters tunes the surface potential energy, inducing a different symmetry in the molecular overlayer lattice, scarcely affecting the reactivity of the metallic sites, as proved by the vibrational modes of adsorbed CO molecules. Thus, we succeeded in tailoring the motif of a self-assembled metallorganic layer while preserving its active sites properties.
Xu, Chunbao. "Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites". Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07302006-231517/.
Pełny tekst źródłaTeja, Amyn, Committee Chair ; Kohl, Paul, Committee Member ; Liu, Meilin, Committee Member ; Nair,Sankar, Committee Member ; Rousseau, Ronald, Committee Member.
Verna, Frédérique. "Etude de l'interaction metal-compose sulfure en catalyse d'hydrogenation". Paris 6, 1988. http://www.theses.fr/1988PA066584.
Pełny tekst źródłaPrice, Robert. "Metal/metal oxide co-impregnated lanthanum strontium calcium titanate anodes for solid oxide fuel cells". Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/16018.
Pełny tekst źródłaAnderson, J. B. F. "Strong metal-support interactions in titania-supported metal catalysts". Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372539.
Pełny tekst źródłaKsiążki na temat "Supported metal catalyst"
1962-, Anderson James A., i Fernández Garcia Marcos, red. Supported metals in catalysis. Hackensack, NJ: World Scientific, 2005.
Znajdź pełny tekst źródła1937-, Anderson James A., i Fernández Garcia Marcos, red. Supported metals in catalysis. London: Imperial College Press, 2005.
Znajdź pełny tekst źródłaSupported metals in catalysis. Wyd. 2. London : Imperial College Press: Distributed by World Scientific, 2012.
Znajdź pełny tekst źródłaBaker, R. T. K., 1938-, Tauster S. J. 1935-, Dumesic J. A. 1949-, American Chemical Society. Division of Petroleum Chemistry., American Chemical Society. Division of Industrial and Engineering Chemistry., American Chemical Society. Division of Colloid and Surface Chemistry. i American Chemical Society Meeting, red. Strong metal-support interactions. Washington, DC: The Society, 1986.
Znajdź pełny tekst źródłaA, Stevenson Scott, red. Metal-support interactions in catalysis, sintering, and redispersion. New York: Van Nostrand Reinhold Co., 1987.
Znajdź pełny tekst źródłaAdamiec, Jan. Badania nad wpływem nośnika na własności sorpcyjne i stabilność termiczna katalizatorów typu metal grupy platyny-nośnik tlenkowy. Poznań: Wydawn. Nauk. Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1989.
Znajdź pełny tekst źródłaVerma, Nita. A study of supported metal catalysts. Uxbridge: Brunel University, 1991.
Znajdź pełny tekst źródłaSupported metal complexes: A new generation of catalysts. Dordrecht: D. Reidel, 1985.
Znajdź pełny tekst źródłaRollins, Keith. Preparation and characterisation of supported metal chloride oxychlorination catalysts. Uxbridge: Brunel University, 1985.
Znajdź pełny tekst źródłaHabibi, D. Catalysis of petrochemical reactions by supported metal complexes. Manchester: UMIST, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Supported metal catalyst"
Cohen, J. B., P. Georgopoulos, J. B. Butt i R. L. Burwell. "Diffraction from Supported Metal Catalysts". W Catalyst Characterization Science, 385–90. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch033.
Pełny tekst źródłaMiura, H., S. S. Feng, R. Saymeh i R. D. Gonzalez. "The Effect of Support-Metal Precursor Interactions on the Surface Composition of Supported Bimetallic Clusters". W Catalyst Characterization Science, 294–304. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch025.
Pełny tekst źródłaChatterjee, Maya, Takayuki Ishizaka i Hajima Kawanami. "Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst". W ACS Symposium Series, 191–250. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1194.ch009.
Pełny tekst źródłaDarji, R., i A. Howie. "Secondary electron imaging in characterisation of heterogeneous supported metal catalyst systems." W Electron Microscopy and Analysis 1997, 391–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-101.
Pełny tekst źródłaKoleva, M. K., A. E. Eiyias i L. A. Petrov. "Fractal Power Spectrum at Catalytic Oxidation of HCOOH over Supported Pd Catalyst". W Metal-Ligand Interactions in Chemistry, Physics and Biology, 353–69. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4245-8_15.
Pełny tekst źródłaKapil, Nidhi. "Controlled Engineering of Supported Metal Nanoparticles Using Electrospraying: Robust Removal of Stabilising Ligands". W Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation, 157–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15066-1_7.
Pełny tekst źródłaMasson, A. "Peculiar Aspects of Heterogeneous Nucleation and Growth Processes Related to Metal Supported Catalyst". W Contribution of Clusters Physics to Materials Science and Technology, 295–309. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4374-2_9.
Pełny tekst źródłaNagai, Takashi, Hiroki Kumakura, Masahito Abe, Kotaro Seki i Daiki Noguchi. "Development of a New Recycling Process of PGM from Metal-Supported Catalyst Using Complex Oxide". W Characterization of Minerals, Metals, and Materials 2017, 379–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51382-9_41.
Pełny tekst źródłaRana, Surjyakanta, i Kulamani Parida. "Transition Metal-Substituted Salt of Tungsten-Based Polyoxometalate-Supported Mesoporous Silica as a Catalyst for Organic Transformation Reactions". W Environmentally Benign Catalysts, 57–90. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6710-2_3.
Pełny tekst źródłaReek, J. N. H., P. W. N. M. Van Leeuwen, A. G. J. Van Der Ham i A. B. De Haan. "Supported Catalysts". W Catalysis by Metal Complexes, 39–72. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4087-3_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Supported metal catalyst"
Nishizawa, Kimiyoshi, Kohji Masuda, Hideaki Horie i Junichiro Hirohashi. "Development of Improved Metal-Supported Catalyst". W SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/890188.
Pełny tekst źródłaGhosh, Bankim B., Prokash Chandra Roy, Mita Ghosh, Paritosh Bhattacharya, Rajsekhar Panua i Prasanta K. Santra. "Control of S.I. Engine Exhaust Emissions Using Non-Precious Catalyst (ZSM-5) Supported Bimetals and Noble Metals as Catalyst". W ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1025.
Pełny tekst źródłaTakada, Toshihiro, i Takashi Tanaka. "Development of a Highly Heat-Resistant Metal Supported Catalyst". W International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910615.
Pełny tekst źródłaChen, Lan, i Yuheng Quan. "Catalytic Ozonation Using Metal Catalyst Supported on NaY Zeolite". W 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/iceesd-17.2017.156.
Pełny tekst źródłaWu, Quanwen, Wenhua Luo, Daqiao Meng, Jinchun Bao i Jingwen Ba. "High Efficient Detritiation Catalysts for Fusion Safety". W 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81269.
Pełny tekst źródłaDahlan, I. Nyoman Marsih, I. G. B. N. Makertihartha, Piyasan Praserthdam, Joongjai Panpranot i Ismunandar. "Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst". W THE 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930791.
Pełny tekst źródłaNitone, Umesh, Jayaveersinh Mahida, Seema Agrawal i Ravi Patel. "Silica supported copper nano particles design from metal waste apply formation of various condensation reaction". W 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.9.
Pełny tekst źródłaYu, Guo, Zhou Lu, Zhao Wen, Jian Chen, Makoto Sakurai i Hideo Kameyama. "A Multipurpose Anodic Alumina Supported Metal Monolithic Catalyst for Steam Reforming of Hydrocarbon". W Innovative Materials for Processes in Energy Systems 2010. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-7614-2_impres033.
Pełny tekst źródłaPelters, Stephan, Friedrich W. Kaiser i Wolfgang Maus. "The Development and Application of a Metal Supported Catalyst for Porsche's 911 Carrera 4". W SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/890488.
Pełny tekst źródłaIotti, Corrado, Vincenzo Rossi, Luca Poggio, Mathias Holzinger, Lorenzo Pace i Manuel Presti. "Backpressure Optimized Metal Supported Close Coupled PE Catalyst - First Application on a Maserati Powertrain". W SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1105.
Pełny tekst źródłaRaporty organizacyjne na temat "Supported metal catalyst"
Henrich, V. Model catalyst studies of active sites and metal support interactions on vanadia and vanadia-supported catalysts. Office of Scientific and Technical Information (OSTI), wrzesień 1989. http://dx.doi.org/10.2172/5484103.
Pełny tekst źródłaGates, B. C. Metal-support bonds in supported metal catalysts. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/6446860.
Pełny tekst źródłaRavindra Datta, Ajeet Singh, Manuela Serban i Istvan Halasz. Supported Molten Metal Catalysis. A New Class of Catalysts. Office of Scientific and Technical Information (OSTI), czerwiec 2006. http://dx.doi.org/10.2172/889459.
Pełny tekst źródłaGates, B. C. Characterization of the metal-support interface in supported metal and supported metal complex catalysts. [Final report]. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10191456.
Pełny tekst źródłaDosch, R., H. Stephens, F. Stohl, B. Bunker i C. Peden. Hydrous metal oxide-supported catalysts. Office of Scientific and Technical Information (OSTI), luty 1990. http://dx.doi.org/10.2172/7015232.
Pełny tekst źródłaBoszormenyi, Istvan. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), maj 1991. http://dx.doi.org/10.2172/10115869.
Pełny tekst źródłaBoszormenyi, I. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), maj 1991. http://dx.doi.org/10.2172/6827194.
Pełny tekst źródłaMetiu, Horia. Theoretical Studies of Catalysis on Supported Metal Clusters. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2005. http://dx.doi.org/10.21236/ada442760.
Pełny tekst źródłaGardner, T. J., L. I. McLaughlin, L. R. Evans i A. K. Datye. Preparation and evaluation of novel hydrous metal oxide (HMO)-supported noble metal catalysts. Office of Scientific and Technical Information (OSTI), kwiecień 1998. http://dx.doi.org/10.2172/671938.
Pełny tekst źródłaD. W. Goodman, J. Wang, B. K. Min, E. Ozensoy i F. Yang. Toward an Understanding of Catalysis by Supported Metal Nanoclusters. Office of Scientific and Technical Information (OSTI), styczeń 2002. http://dx.doi.org/10.2172/813462.
Pełny tekst źródła