Artykuły w czasopismach na temat „Supervised Motor Learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Supervised Motor Learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Xian, Xiaoyu, Haichuan Tang, Yin Tian, Qi Liu i Yuming Fan. "Performance Analysis of Different Machine Learning Algorithms for Identifying and Classifying the Failures of Traction Motors". Journal of Physics: Conference Series 2095, nr 1 (1.11.2021): 012058. http://dx.doi.org/10.1088/1742-6596/2095/1/012058.
Pełny tekst źródłaEt. al., Rameshwar D. Chintamani,. "Analysis of Motor Imagery EEG Classification Based on Feature Extraction and Machine Learning Algorithm". INFORMATION TECHNOLOGY IN INDUSTRY 9, nr 2 (26.03.2021): 541–53. http://dx.doi.org/10.17762/itii.v9i2.381.
Pełny tekst źródłaSingh, Puneet, Sumitash Jana, Ashitava Ghosal i Aditya Murthy. "Exploration of joint redundancy but not task space variability facilitates supervised motor learning". Proceedings of the National Academy of Sciences 113, nr 50 (29.11.2016): 14414–19. http://dx.doi.org/10.1073/pnas.1613383113.
Pełny tekst źródłaShe, Zhou, Gan, Ma i Luo. "Decoding EEG in Motor Imagery Tasks with Graph Semi-Supervised Broad Learning". Electronics 8, nr 11 (1.11.2019): 1273. http://dx.doi.org/10.3390/electronics8111273.
Pełny tekst źródłaRaymond, Jennifer L., i Javier F. Medina. "Computational Principles of Supervised Learning in the Cerebellum". Annual Review of Neuroscience 41, nr 1 (8.07.2018): 233–53. http://dx.doi.org/10.1146/annurev-neuro-080317-061948.
Pełny tekst źródłaJigyasu, R., V. Shrivastava i S. Singh. "Prognostics and health management of induction motor by supervised learning classifiers". IOP Conference Series: Materials Science and Engineering 1168, nr 1 (1.07.2021): 012006. http://dx.doi.org/10.1088/1757-899x/1168/1/012006.
Pełny tekst źródłaZhang, Weiwei, Deji Chen i Yang Kong. "Self-Supervised Joint Learning Fault Diagnosis Method Based on Three-Channel Vibration Images". Sensors 21, nr 14 (13.07.2021): 4774. http://dx.doi.org/10.3390/s21144774.
Pełny tekst źródłaTang, Xian-Lun, Wei-Chang Ma, De-Song Kong i Wei Li. "Semisupervised Deep Stacking Network with Adaptive Learning Rate Strategy for Motor Imagery EEG Recognition". Neural Computation 31, nr 5 (maj 2019): 919–42. http://dx.doi.org/10.1162/neco_a_01183.
Pełny tekst źródłaPyle, Ryan, i Robert Rosenbaum. "A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity". Neural Computation 31, nr 7 (lipiec 2019): 1430–61. http://dx.doi.org/10.1162/neco_a_01198.
Pełny tekst źródłaCingireddy, Anirudh Reddy, Robin Ghosh, Venkata Kiran Melapu, Sravanthi Joginipelli i Tor A. Kwembe. "Classification of Parkinson's Disease Using Motor and Non-Motor Biomarkers Through Machine Learning Techniques". International Journal of Quantitative Structure-Property Relationships 7, nr 2 (kwiecień 2022): 1–21. http://dx.doi.org/10.4018/ijqspr.290011.
Pełny tekst źródłaWang, Chiao-Sheng, I.-Hsi Kao i Jau-Woei Perng. "Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning". Sensors 21, nr 11 (22.05.2021): 3608. http://dx.doi.org/10.3390/s21113608.
Pełny tekst źródłaOu, Yanghan, Siqin Sun, Haitao Gan, Ran Zhou i Zhi Yang. "An improved self-supervised learning for EEG classification". Mathematical Biosciences and Engineering 19, nr 7 (2022): 6907–22. http://dx.doi.org/10.3934/mbe.2022325.
Pełny tekst źródłaRovini, Erika, Carlo Maremmani, Alessandra Moschetti, Dario Esposito i Filippo Cavallo. "Comparative Motor Pre-clinical Assessment in Parkinson’s Disease Using Supervised Machine Learning Approaches". Annals of Biomedical Engineering 46, nr 12 (20.07.2018): 2057–68. http://dx.doi.org/10.1007/s10439-018-2104-9.
Pełny tekst źródłaSharrar, Labib. "Anomaly Detection System for Stepper Motors". International Journal of Engineering Research in Electronics and Communication Engineering 9, nr 6 (30.06.2022): 26–35. http://dx.doi.org/10.36647/ijerece/09.06.a005.
Pełny tekst źródłaDevlaminck, Dieter, Bart Wyns, Moritz Grosse-Wentrup, Georges Otte i Patrick Santens. "Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI". Computational Intelligence and Neuroscience 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/217987.
Pełny tekst źródłaDas, Arun, Jeffrey Mock, Yufei Huang, Edward Golob i Peyman Najafirad. "Interpretable Self-Supervised Facial Micro-Expression Learning to Predict Cognitive State and Neurological Disorders". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 818–26. http://dx.doi.org/10.1609/aaai.v35i1.16164.
Pełny tekst źródłaShifat, Tanvir Alam, i Jang-Wook Hur. "EEMD assisted supervised learning for the fault diagnosis of BLDC motor using vibration signal". Journal of Mechanical Science and Technology 34, nr 10 (24.07.2020): 3981–90. http://dx.doi.org/10.1007/s12206-020-2208-7.
Pełny tekst źródłaZaki Zadeh, Mohammad, Ashwin Ramesh Babu, Ashish Jaiswal i Fillia Makedon. "Self-Supervised Human Activity Representation for Embodied Cognition Assessment". Technologies 10, nr 1 (17.02.2022): 33. http://dx.doi.org/10.3390/technologies10010033.
Pełny tekst źródłaQi, Yugang, Sijie Tan, Mingyang Sui i Jianxiong Wang. "SUPERVISED PHYSICAL TRAINING IMPROVES FINE MOTOR SKILLS OF 5-YEAR-OLD CHILDREN". Revista Brasileira de Medicina do Esporte 24, nr 1 (styczeń 2018): 9–12. http://dx.doi.org/10.1590/1517-869220182401177117.
Pełny tekst źródłaXu, Yilu, Hua Yin, Wenlong Yi, Xin Huang, Wenjuan Jian, Canhua Wang i Ronghua Hu. "Supervised and Semisupervised Manifold Embedded Knowledge Transfer in Motor Imagery-Based BCI". Computational Intelligence and Neuroscience 2022 (17.10.2022): 1–19. http://dx.doi.org/10.1155/2022/1603104.
Pełny tekst źródłaFujita, Masahiko. "New Supervised Learning Theory Applied to Cerebellar Modeling for Suppression of Variability of Saccade End Points". Neural Computation 25, nr 6 (czerwiec 2013): 1440–71. http://dx.doi.org/10.1162/neco_a_00448.
Pełny tekst źródłaAbu Al-Haija, Qasem, i Moez Krichen. "A Lightweight In-Vehicle Alcohol Detection Using Smart Sensing and Supervised Learning". Computers 11, nr 8 (3.08.2022): 121. http://dx.doi.org/10.3390/computers11080121.
Pełny tekst źródłaRodrigues, Luis Guilherme Silva, Diego Roberto Colombo Dias, Marcelo De Paiva Guimarães, Alexandre Fonseca Brandão, Leonardo C. Rocha, Rogério Luiz Iope i José Remo Ferreira Brega. "Supervised Classification of Motor-Rehabilitation Body Movements with RGB Cameras and Pose Tracking Data". Journal on Interactive Systems 13, nr 1 (6.09.2022): 221–31. http://dx.doi.org/10.5753/jis.2022.2409.
Pełny tekst źródłaLi, Hailong, Zhiyuan Li, Kevin Du, Yu Zhu, Nehal A. Parikh i Lili He. "A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants". Diagnostics 13, nr 8 (21.04.2023): 1508. http://dx.doi.org/10.3390/diagnostics13081508.
Pełny tekst źródłaSadouk, Lamyaa, Taoufiq Gadi i El Hassan Essoufi. "A Novel Deep Learning Approach for Recognizing Stereotypical Motor Movements within and across Subjects on the Autism Spectrum Disorder". Computational Intelligence and Neuroscience 2018 (10.07.2018): 1–16. http://dx.doi.org/10.1155/2018/7186762.
Pełny tekst źródłaSchwarz, Andreas, Julia Brandstetter, Joana Pereira i Gernot R. Müller-Putz. "Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs". Medical & Biological Engineering & Computing 57, nr 11 (14.09.2019): 2347–57. http://dx.doi.org/10.1007/s11517-019-02047-1.
Pełny tekst źródłaLakshmi Praveena, T., i N. V. Muthu Lakshmi. "Prediction of Autism Spectrum Disorder Using Supervised Machine Learning Algorithms". Asian Journal of Computer Science and Technology 8, nr 3 (15.11.2019): 15–18. http://dx.doi.org/10.51983/ajcst-2019.8.3.2734.
Pełny tekst źródłaChen, Junjian, Zhuliang Yu i Zhenghui Gu. "Semi-supervised Deep Learning in Motor Imagery-Based Brain-Computer Interfaces with Stacked Variational Autoencoder". Journal of Physics: Conference Series 1631 (wrzesień 2020): 012007. http://dx.doi.org/10.1088/1742-6596/1631/1/012007.
Pełny tekst źródłaShe, Qingshan, Jie Zou, Zhizeng Luo, Thinh Nguyen, Rihui Li i Yingchun Zhang. "Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine". Medical & Biological Engineering & Computing 58, nr 9 (16.07.2020): 2119–30. http://dx.doi.org/10.1007/s11517-020-02227-4.
Pełny tekst źródłaLing, Xufeng, Yapeng Wu, Rahman Ali i Huaizhong Zhu. "Magnetic Tile Surface Defect Detection Methodology Based on Self-Attention and Self-Supervised Learning". Computational Intelligence and Neuroscience 2022 (3.08.2022): 1–10. http://dx.doi.org/10.1155/2022/3003810.
Pełny tekst źródłaSaxena, Abhinav, Rajat Kumar, Arun Kumar Rawat, Mohd Majid, Jay Singh, S. Devakirubakaran i Gyanendra Kumar Singh. "Abnormal Health Monitoring and Assessment of a Three-Phase Induction Motor Using a Supervised CNN-RNN-Based Machine Learning Algorithm". Mathematical Problems in Engineering 2023 (30.01.2023): 1–8. http://dx.doi.org/10.1155/2023/1264345.
Pełny tekst źródłaZhao, Xianghong, Jieyu Zhao, Weiming Cai i Shuangqing Wu. "Transferring Common Spatial Filters With Semi-Supervised Learning for Zero-Training Motor Imagery Brain-Computer Interface". IEEE Access 7 (2019): 58120–30. http://dx.doi.org/10.1109/access.2019.2913154.
Pełny tekst źródłaWang, Fang, Kai Xu, Qiao Sheng Zhang, Yi Wen Wang i Xiao Xiang Zheng. "A Multi-Step Neural Control for Motor Brain-Machine Interface by Reinforcement Learning". Applied Mechanics and Materials 461 (listopad 2013): 565–69. http://dx.doi.org/10.4028/www.scientific.net/amm.461.565.
Pełny tekst źródłaGhorbani, Saeed, Amir Dana i Zynalabedin Fallah. "The effects of external and internal focus of attention on motor learning and promoting learner’s focus". Biomedical Human Kinetics 11, nr 1 (1.01.2019): 175–80. http://dx.doi.org/10.2478/bhk-2019-0024.
Pełny tekst źródłaLee, Seyoung, Jiye Lee i Jehee Lee. "Learning Virtual Chimeras by Dynamic Motion Reassembly". ACM Transactions on Graphics 41, nr 6 (30.11.2022): 1–13. http://dx.doi.org/10.1145/3550454.3555489.
Pełny tekst źródłaLiu, Minjie, Mingming Zhou, Tao Zhang i Naixue Xiong. "Semi-supervised learning quantization algorithm with deep features for motor imagery EEG Recognition in smart healthcare application". Applied Soft Computing 89 (kwiecień 2020): 106071. http://dx.doi.org/10.1016/j.asoc.2020.106071.
Pełny tekst źródłaAltaf, Saud, Muhammad Waseem Soomro i Mirza Sajid Mehmood. "Fault Diagnosis and Detection in Industrial Motor Network Environment Using Knowledge-Level Modelling Technique". Modelling and Simulation in Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/1292190.
Pełny tekst źródłaRedkar, Sangram. "Using Deep Learning for Human Computer Interface via Electroencephalography". IAES International Journal of Robotics and Automation (IJRA) 4, nr 4 (1.12.2015): 292. http://dx.doi.org/10.11591/ijra.v4i4.pp292-310.
Pełny tekst źródłaCardenas, Javier A., Uriel E. Carrero, Edgar C. Camacho i Juan M. Calderon. "Intelligent Position Controller for Unmanned Aerial Vehicles (UAV) Based on Supervised Deep Learning". Machines 11, nr 6 (2.06.2023): 606. http://dx.doi.org/10.3390/machines11060606.
Pełny tekst źródłaAich, Satyabrata, Jinyoung Youn, Sabyasachi Chakraborty, Pyari Mohan Pradhan, Jin-han Park, Seongho Park i Jinse Park. "A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals". Diagnostics 10, nr 6 (20.06.2020): 421. http://dx.doi.org/10.3390/diagnostics10060421.
Pełny tekst źródłaE., Sica, Savarese G., Criscitiello G. i Grano R. "The “School in the Green”: An Experience of Developing Scholastic Intelligence Through the Enhancement of the Naturalistic and Visual-Spatial Ones". British Journal of Education, Learning and Development Psychology 6, nr 3 (14.08.2023): 1–6. http://dx.doi.org/10.52589/bjeldp-sqmy0hxc.
Pełny tekst źródłaBrons, Annette, Antoine de Schipper, Svetlana Mironcika, Huub Toussaint, Ben Schouten, Sander Bakkes i Ben Kröse. "Assessing Children’s Fine Motor Skills With Sensor-Augmented Toys: Machine Learning Approach". Journal of Medical Internet Research 23, nr 4 (22.04.2021): e24237. http://dx.doi.org/10.2196/24237.
Pełny tekst źródłaAnitha Kumari, K., Avinash Sharma, S. Nivethitha, V. Dharini, V. Sanjith, R. Vaishnavi, G. Jothika i K. Shophiya. "Automated Outlier Detection for Electrical Motors and Transformers". Journal of Computational and Theoretical Nanoscience 17, nr 9 (1.07.2020): 4703–8. http://dx.doi.org/10.1166/jctn.2020.9304.
Pełny tekst źródłaSammut, Stephen, Ryan G. L. Koh i José Zariffa. "Compensation Strategies for Bioelectric Signal Changes in Chronic Selective Nerve Cuff Recordings: A Simulation Study". Sensors 21, nr 2 (12.01.2021): 506. http://dx.doi.org/10.3390/s21020506.
Pełny tekst źródłaWENG, JUYANG, TIANYU LUWANG, HONG LU i XIANGYANG XUE. "A MULTILAYER IN-PLACE LEARNING NETWORK FOR DEVELOPMENT OF GENERAL INVARIANCES". International Journal of Humanoid Robotics 04, nr 02 (czerwiec 2007): 281–320. http://dx.doi.org/10.1142/s0219843607001072.
Pełny tekst źródłaBaker, Sunderland, Anand Tekriwal, Gidon Felsen, Elijah Christensen, Lisa Hirt, Steven G. Ojemann, Daniel R. Kramer, Drew S. Kern i John A. Thompson. "Automatic extraction of upper-limb kinematic activity using deep learning-based markerless tracking during deep brain stimulation implantation for Parkinson’s disease: A proof of concept study". PLOS ONE 17, nr 10 (20.10.2022): e0275490. http://dx.doi.org/10.1371/journal.pone.0275490.
Pełny tekst źródłaDai, Mengxi, Dezhi Zheng, Shucong Liu i Pengju Zhang. "Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification". Computational and Mathematical Methods in Medicine 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/9871603.
Pełny tekst źródłaAnastasiev, Alexey, Hideki Kadone, Aiki Marushima, Hiroki Watanabe, Alexander Zaboronok, Shinya Watanabe, Akira Matsumura, Kenji Suzuki, Yuji Matsumaru i Eiichi Ishikawa. "Supervised Myoelectrical Hand Gesture Recognition in Post-Acute Stroke Patients with Upper Limb Paresis on Affected and Non-Affected Sides". Sensors 22, nr 22 (11.11.2022): 8733. http://dx.doi.org/10.3390/s22228733.
Pełny tekst źródłaTorabi, Faraz. "Imitation Learning from Observation". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9900–9901. http://dx.doi.org/10.1609/aaai.v33i01.33019900.
Pełny tekst źródłaMohammed, Mohammed Guhdar, Belnd Saadi Salih i Vaman Muhammed Haji. "Employing EMG sensors in Bionic limbs based on a New Binary Trick Method". Science Journal of University of Zakho 11, nr 1 (29.01.2023): 54–58. http://dx.doi.org/10.25271/sjuoz.2023.11.1.1027.
Pełny tekst źródła