Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Supervised categorization.

Artykuły w czasopismach na temat „Supervised categorization”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Supervised categorization”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Rodrigues, Valter, i Josef Skrzypek. "COMBINING SIMILARITIES AND DISSIMILARITIES IN SUPERVISED LEARNING". International Journal of Neural Systems 02, nr 03 (styczeń 1991): 263–73. http://dx.doi.org/10.1142/s0129065791000236.

Pełny tekst źródła
Streszczenie:
Categorization, as an active phase of the visual perception, must include a stage where a currently viewed exemplar of an object is compared to the previously acquired category representatives; comparisons between exemplars as opposed to simply examining one exemplar in isolation lead to improved supervised learning. An abstract model of a neuron (SD neuron) is introduced, that can compare inputs by detecting (S)imilarities and (D)issimilarities in sequentially presented stimuli. Using SD neurons in a traditional Back Error Propagation (BP) neural networks improves categorization and learning capability. The nonlinear combination of similar and dissimilar input features captures more extensive information about stimulus. SD networks also display more effective convergence properties than BP networks when tested with XOR problems. Finally, in a comparative study of printed-letter categorization, the SD network model performed better than the traditional BP network.
Style APA, Harvard, Vancouver, ISO itp.
2

Arya, Vaishali, i Rashmi Agrawal. "Improvement in Text Categorization Using Semi-Supervised Approach and Lexical Chains". Journal of Computational and Theoretical Nanoscience 16, nr 12 (1.12.2019): 5122–26. http://dx.doi.org/10.1166/jctn.2019.8573.

Pełny tekst źródła
Streszczenie:
Text categorization is used for assigning the class labels to the available data set or providing a conceptual view to a data set. The text categorization can be performed in two ways supervised way, and in an unsupervised way. But alone neither can perform well in the categorization of data set. So a semi-supervised model with the combination of lexical chains is used to perform the task of categorization. In the proposed semi-supervised model the lexical chains are used to determine the numbers of clusters has to be formed using k-means clustering. This ‘k-means’ will divide the data set into different categories and then onto these different categories the support vector Machine (SVM) model is applied for the classification task. The purpose is to improve the performance of support vector Machine by having data already in some pattern, otherwise, support vector Machine will take a lot of time in the training of data set.
Style APA, Harvard, Vancouver, ISO itp.
3

Mandal, Ashis Kumar, i Rikta Sen. "Supervised Learning Methods for Bangla Web Document Categorization". International Journal of Artificial Intelligence & Applications 5, nr 5 (30.09.2014): 93–105. http://dx.doi.org/10.5121/ijaia.2014.5508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mahmood, Amjad, Tianrui Li, Yan Yang, Hongjun Wang i Mehtab Afzal. "Semi-supervised evolutionary ensembles for Web video categorization". Knowledge-Based Systems 76 (marzec 2015): 53–66. http://dx.doi.org/10.1016/j.knosys.2014.11.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Li, Ximing, Jihong Ouyang, Xiaotang Zhou, You Lu i Yanhui Liu. "Supervised labeled latent Dirichlet allocation for document categorization". Applied Intelligence 42, nr 3 (25.11.2014): 581–93. http://dx.doi.org/10.1007/s10489-014-0595-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Xu, Zewen, Jianqiang Li, Bo Liu, Jing Bi, Rong Li i Rui Mao. "Semi-supervised learning in large scale text categorization". Journal of Shanghai Jiaotong University (Science) 22, nr 3 (30.05.2017): 291–302. http://dx.doi.org/10.1007/s12204-017-1835-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lu, Wei, i Min-Yen Kan. "Supervised categorization of JavaScriptTM using program analysis features". Information Processing & Management 43, nr 2 (marzec 2007): 431–44. http://dx.doi.org/10.1016/j.ipm.2006.07.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

CAI, Yue-hong, Qian ZHU, Ping SUN i Xian-yi CHENG. "Semi-supervised short text categorization based on attribute selection". Journal of Computer Applications 30, nr 4 (30.04.2010): 1015–18. http://dx.doi.org/10.3724/sp.j.1087.2010.01015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

ROBINS, ANTHONY V. "Incorporating Supervised Learning in the Domains Account of Categorization". Connection Science 4, nr 1 (styczeń 1992): 45–56. http://dx.doi.org/10.1080/09540099208946603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yan, Yang, Lihui Chen i William-Chandra Tjhi. "Semi-supervised fuzzy co-clustering algorithm for document categorization". Knowledge and Information Systems 34, nr 1 (15.11.2011): 55–74. http://dx.doi.org/10.1007/s10115-011-0454-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Nguyen, Tam T., Kuiyu Chang i Siu Cheung Hui. "Supervised term weighting centroid-based classifiers for text categorization". Knowledge and Information Systems 35, nr 1 (9.09.2012): 61–85. http://dx.doi.org/10.1007/s10115-012-0559-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Basu, Tanmay, i C. A. Murthy. "A supervised term selection technique for effective text categorization". International Journal of Machine Learning and Cybernetics 7, nr 5 (18.09.2015): 877–92. http://dx.doi.org/10.1007/s13042-015-0421-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

COLREAVY, E., i S. LEWANDOWSKY. "Strategy development and learning differences in supervised and unsupervised categorization". Memory & Cognition 36, nr 4 (1.06.2008): 762–75. http://dx.doi.org/10.3758/mc.36.4.762.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Wajeed, Mohammed Abdul. "Comparison Of Supervised and Semisupervised Fuzzy Clusters in Text Categorization". International Journal of Fuzzy Logic Systems 2, nr 1 (31.01.2012): 41–51. http://dx.doi.org/10.5121/ijfls.2012.2105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Dornaika, F., Y. El Traboulsi i A. Assoum. "Inductive and flexible feature extraction for semi-supervised pattern categorization". Pattern Recognition 60 (grudzień 2016): 275–85. http://dx.doi.org/10.1016/j.patcog.2016.04.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zhang, Yu, Xiu-Shen Wei, Jianxin Wu, Jianfei Cai, Jiangbo Lu, Viet-Anh Nguyen i Minh N. Do. "Weakly Supervised Fine-Grained Categorization With Part-Based Image Representation". IEEE Transactions on Image Processing 25, nr 4 (kwiecień 2016): 1713–25. http://dx.doi.org/10.1109/tip.2016.2531289.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Pothos, Emmanuel M., Darren J. Edwards i Amotz Perlman. "Supervised versus Unsupervised Categorization: Two Sides of the Same Coin?" Quarterly Journal of Experimental Psychology 64, nr 9 (wrzesień 2011): 1692–713. http://dx.doi.org/10.1080/17470218.2011.554990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Xu, Zhe, Shaoli Huang, Ya Zhang i Dacheng Tao. "Webly-Supervised Fine-Grained Visual Categorization via Deep Domain Adaptation". IEEE Transactions on Pattern Analysis and Machine Intelligence 40, nr 5 (1.05.2018): 1100–1113. http://dx.doi.org/10.1109/tpami.2016.2637331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Man Lan, Chew Lim Tan, Jian Su i Yue Lu. "Supervised and Traditional Term Weighting Methods for Automatic Text Categorization". IEEE Transactions on Pattern Analysis and Machine Intelligence 31, nr 4 (kwiecień 2009): 721–35. http://dx.doi.org/10.1109/tpami.2008.110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Narayana Swamy, M., i M. Hanumanthappa. "Indian Language Text Representation and Categorization Using Supervised Learning Algorithm". International Journal of Web Technology 002, nr 002 (10.12.2013): 40–44. http://dx.doi.org/10.20894/ijwt.104.002.002.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Wang, Junzheng, Nanyu Li, Zhiming Luo, Zhun Zhong i Shaozi Li. "High-Order-Interaction for weakly supervised Fine-Grained Visual Categorization". Neurocomputing 464 (listopad 2021): 27–36. http://dx.doi.org/10.1016/j.neucom.2021.08.108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Livieris, Ioannis, Emmanuel Pintelas i Panagiotis Pintelas. "Gender Recognition by Voice using an Improved Self-Labeled Algorithm". Machine Learning and Knowledge Extraction 1, nr 1 (5.03.2019): 492–503. http://dx.doi.org/10.3390/make1010030.

Pełny tekst źródła
Streszczenie:
Speech recognition has various applications including human to machine interaction, sorting of telephone calls by gender categorization, video categorization with tagging and so on. Currently, machine learning is a popular trend which has been widely utilized in various fields and applications, exploiting the recent development in digital technologies and the advantage of storage capabilities from electronic media. Recently, research focuses on the combination of ensemble learning techniques with the semi-supervised learning framework aiming to build more accurate classifiers. In this paper, we focus on gender recognition by voice utilizing a new ensemble semi-supervised self-labeled algorithm. Our preliminary numerical experiments demonstrate the classification efficiency of the proposed algorithm in terms of accuracy, leading to the development of stable and robust predictive models.
Style APA, Harvard, Vancouver, ISO itp.
23

Xia, Rong Ze, Yan Jia i Hu Li. "A Text Categorization Method Based on SVM and Improved K-Means". Applied Mechanics and Materials 427-429 (wrzesień 2013): 2449–53. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2449.

Pełny tekst źródła
Streszczenie:
Traditional supervised classification method such as support vector machine (SVM) could achieve high performance in text categorization. However, we should first hand-labeled the samples before classifying. Its a time-consuming task. Unsupervised method such as k-means could also be used for handling the text categorization problem. However, Traditional k-means could easily be affected by several isolated observations. In this paper, we proposed a new text categorization method. First we improved the traditional k-means clustering algorithm. The improved k-means is used for clustering vectors in our vector space model. After that, we use the SVM to categorize vectors which are preprocessed by improved k-means. The experiments show that our algorithm could out-perform the traditional SVM text categorization method.
Style APA, Harvard, Vancouver, ISO itp.
24

Zou, Huan Xin, Hao Sun i Ke Feng Ji. "Discriminative Action Recognition Using Supervised Latent Topic Model". Applied Mechanics and Materials 190-191 (lipiec 2012): 1125–28. http://dx.doi.org/10.4028/www.scientific.net/amm.190-191.1125.

Pełny tekst źródła
Streszczenie:
We present a discriminative learning method for human action recognition from video sequences. Our model combines a bag-of-words component with supervised latent topic models. The supervised latent Dirichlet allocation (sLDA) topic model, which employs discriminative learning using labeled data under a generative framework, is introduced to discover the latent topic structure which is most relevant to action categorization. We test our algorithm on two challenging datasets. Experimental results demonstrate the effectiveness of our algorithm.
Style APA, Harvard, Vancouver, ISO itp.
25

Keyvanpour, Mohammad Reza, i Maryam Bahojb Imani. "Semi-supervised text categorization: Exploiting unlabeled data using ensemble learning algorithms". Intelligent Data Analysis 17, nr 3 (16.05.2013): 367–85. http://dx.doi.org/10.3233/ida-130584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Skarmeta, Antonio G�mez, Amine Bensaid i Nadia Tazi. "Data mining for text categorization with semi-supervised agglomerative hierarchical clustering". International Journal of Intelligent Systems 15, nr 7 (lipiec 2000): 633–46. http://dx.doi.org/10.1002/(sici)1098-111x(200007)15:7<633::aid-int4>3.0.co;2-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lee, Chung-Hong, i Hsin-Chang Yang. "Construction of supervised and unsupervised learning systems for multilingual text categorization". Expert Systems with Applications 36, nr 2 (marzec 2009): 2400–2410. http://dx.doi.org/10.1016/j.eswa.2007.12.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Patel, Chandrakant D., i Jayesh M. Patel. "Influence of GUJarati STEmmeR in Supervised Learning of Web Page Categorization". International Journal of Intelligent Systems and Applications 13, nr 3 (8.06.2021): 23–34. http://dx.doi.org/10.5815/ijisa.2021.03.03.

Pełny tekst źródła
Streszczenie:
With the large quantity of information offered on-line, it's equally essential to retrieve correct information for a user query. A large amount of data is available in digital form in multiple languages. The various approaches want to increase the effectiveness of on-line information retrieval but the standard approach tries to retrieve information for a user query is to go looking at the documents within the corpus as a word by word for the given query. This approach is incredibly time intensive and it's going to miss several connected documents that are equally important. So, to avoid these issues, stemming has been extensively utilized in numerous Information Retrieval Systems (IRS) to extend the retrieval accuracy of all languages. These papers go through the problem of stemming with Web Page Categorization on Gujarati language which basically derived the stem words using GUJSTER algorithms [1]. The GUJSTER algorithm is based on morphological rules which is used to derived root or stem word from inflected words of the same class. In particular, we consider the influence of extracted a stem or root word, to check the integrity of the web page classification using supervised machine learning algorithms. This research work is intended to focus on the analysis of Web Page Categorization (WPC) of Gujarati language and concentrate on a research problem to do verify the influence of a stemming algorithm in a WPC application for the Gujarati language with improved accuracy between from 63% to 98% through Machine Learning supervised models with standard ratio 80% as training and 20% as testing.
Style APA, Harvard, Vancouver, ISO itp.
29

Caceres, Noelia, i Francisco G. Benitez. "Supervised Land Use Inference from Mobility Patterns". Journal of Advanced Transportation 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/8710402.

Pełny tekst źródła
Streszczenie:
This paper addresses the relationship between land use and mobility patterns. Since each particular zone directly feeds the global mobility once acting as origin of trips and others as destination, both roles are simultaneously used for predicting land uses. Specifically this investigation uses mobility data derived from mobile phones, a technology that emerges as a useful, quick data source on people’s daily mobility, collected during two weeks over the urban area of Malaga (Spain). This allows exploring the relevance of integrating weekday-weekend trip information to better determine the category of land use. First, this work classifies patterns on trips originated and terminated in each zone into groups by means of a clustering approach. Based on identifiable relationships between activity and times when travel peaks appear, a preliminary categorization of uses is provided. Then, both grouping results are used as input variables in a K-nearest neighbors (KNN) classification model to determine the exact land use. The KNN method assumes that the category of an object must be similar to the category of the closest neighbors. After training the models, the findings reveal that this approach provides a precise land use categorization, yielding the best accuracy results for the major categories of land uses in the studied area. Moreover, as a result, the weekend data certainly contributes to finding more precise land uses as those obtained by just weekday data. In particular, the percentage of correctly predicted categories using both weekday and weekend is around 80%, while just weekday data reach 67%. The comparison with actual land uses also demonstrates that this approach is able to provide useful information, identifying zones with a specific clear dominant use (residential, industrial, and commercial), as well as multiactivity zones (mixed). This fact is especially useful in the context of urban environments where multiple activities coexist.
Style APA, Harvard, Vancouver, ISO itp.
30

Iwata, Tomoharu, Kazumi Saito, Naonori Ueda, Sean Stromsten, Thomas L. Griffiths i Joshua B. Tenenbaum. "Parametric Embedding for Class Visualization". Neural Computation 19, nr 9 (wrzesień 2007): 2536–56. http://dx.doi.org/10.1162/neco.2007.19.9.2536.

Pełny tekst źródła
Streszczenie:
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
Style APA, Harvard, Vancouver, ISO itp.
31

Basu, Tanmay, i C. A. Murthy. "A Similarity Based Supervised Decision Rule for Qualitative Improvement of Text Categorization". Fundamenta Informaticae 141, nr 4 (9.12.2015): 275–95. http://dx.doi.org/10.3233/fi-2015-1276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Zhang, Yabin, Kui Jia i Zhixin Wang. "Part-Aware Fine-Grained Object Categorization Using Weakly Supervised Part Detection Network". IEEE Transactions on Multimedia 22, nr 5 (maj 2020): 1345–57. http://dx.doi.org/10.1109/tmm.2019.2939747.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Cong, Yang, Ji Liu, Junsong Yuan i Jiebo Luo. "Self-Supervised Online Metric Learning With Low Rank Constraint for Scene Categorization". IEEE Transactions on Image Processing 22, nr 8 (sierpień 2013): 3179–91. http://dx.doi.org/10.1109/tip.2013.2260168.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ciocca, Gianluigi, Claudio Cusano, Simone Santini i Raimondo Schettini. "On the use of supervised features for unsupervised image categorization: An evaluation". Computer Vision and Image Understanding 122 (maj 2014): 155–71. http://dx.doi.org/10.1016/j.cviu.2014.01.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Limsettho, Nachai, Hideaki Hata, Akito Monden i Kenichi Matsumoto. "Unsupervised Bug Report Categorization Using Clustering and Labeling Algorithm". International Journal of Software Engineering and Knowledge Engineering 26, nr 07 (wrzesień 2016): 1027–53. http://dx.doi.org/10.1142/s0218194016500352.

Pełny tekst źródła
Streszczenie:
Bug reports are one of the most crucial information sources for software engineering offering answers to many questions. Yet, getting these answers is not always easy; the information in bug reports is often implicit and some processes are required to extract the meaning of these reports. Most research in this area employ a supervised learning approach to classify bug reports so that required types of reports could be identified. However, this approach often requires an immense amount of time and effort, the resources that already too scarce in many projects. We aim to develop an automated framework that can categorize bug reports, according to their grammatical structure without the need for labeled data. Our framework categorizes bug reports according to their text similarity using topic modeling and a clustering algorithm. Each group of bug reports are labeled with our new clustering labeling algorithm specifically made for clusters in the topic space. Our framework is highly customizable with a modular approach and options to incorporate available background knowledge to improve its performance, while our cluster labeling approach make use of natural language process (NLP) chunking to create the representative labels. Our experiment results demonstrate that the performance of our unsupervised framework is comparable to a supervised learning one. We also show that our labeling process is capable of labeling each cluster with phrases that are representative for that cluster's characteristics. Our framework can be used to automatically categorize the incoming bug reports without any prior knowledge, as an automated labeling suggestion system or as a tool for obtaining knowledge about the structure of the bug report repository.
Style APA, Harvard, Vancouver, ISO itp.
36

Abuthawabeh, Mohammad, i Khaled Mahmoud. "Enhanced Android Malware Detection and Family Classification, using Conversation-level Network Traffic Features". International Arab Journal of Information Technology 17, nr 4A (31.07.2020): 607–14. http://dx.doi.org/10.34028/iajit/17/4a/4.

Pełny tekst źródła
Streszczenie:
Signature-based malware detection algorithms are facing challenges to cope with the massive number of threats in the Android environment. In this paper, conversation-level network traffic features are extracted and used in a supervised-based model. This model was used to enhance the process of Android malware detection, categorization, and family classification. The model employs the ensemble learning technique in order to select the most useful features among the extracted features. A real-world dataset called CICAndMal2017 was used in this paper. The results show that Extra-trees classifier had achieved the highest weighted accuracy percentage among the other classifiers by 87.75%, 79.97%, and 66.71%for malware detection, malware categorization, and malware family classification respectively. A comparison with another study that uses the same dataset was made. This study has achieved a significant enhancement in malware family classification and malware categorization. For malware family classification, the enhancement was 39.71% for precision and 41.09% for recall. The rate of enhancement for the Android malware categorization was 30.2% and 31.14‬% for precision and recall, respectively
Style APA, Harvard, Vancouver, ISO itp.
37

Yang, Guofeng, Guipeng Chen, Yong He, Zhiyan Yan, Yang Guo i Jian Ding. "Self-Supervised Collaborative Multi-Network for Fine-Grained Visual Categorization of Tomato Diseases". IEEE Access 8 (2020): 211912–23. http://dx.doi.org/10.1109/access.2020.3039345.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Traboulsi, Y. El, i F. Dornaika. "Flexible semi-supervised embedding based on adaptive loss regression: Application to image categorization". Information Sciences 444 (maj 2018): 1–19. http://dx.doi.org/10.1016/j.ins.2018.02.044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

He, Zhiyang, Ji Wu i Tao Li. "Label Correlation Mixture Model: A Supervised Generative Approach to Multilabel Spoken Document Categorization". IEEE Transactions on Emerging Topics in Computing 3, nr 2 (czerwiec 2015): 235–45. http://dx.doi.org/10.1109/tetc.2014.2377559.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Dornaika, F., A. Bosaghzadeh, H. Salmane i Y. Ruichek. "Graph-based semi-supervised learning with Local Binary Patterns for holistic object categorization". Expert Systems with Applications 41, nr 17 (grudzień 2014): 7744–53. http://dx.doi.org/10.1016/j.eswa.2014.06.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Soto, P. J., J. D. Bermudez, P. N. Happ i R. Q. Feitosa. "A COMPARATIVE ANALYSIS OF UNSUPERVISED AND SEMI-SUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CATEGORIZATION". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W7 (16.09.2019): 167–73. http://dx.doi.org/10.5194/isprs-annals-iv-2-w7-167-2019.

Pełny tekst źródła
Streszczenie:
<p><strong>Abstract.</strong> This work aims at investigating unsupervised and semi-supervised representation learning methods based on generative adversarial networks for remote sensing scene classification. The work introduces a novel approach, which consists in a semi-supervised extension of a prior unsupervised method, known as MARTA-GAN. The proposed approach was compared experimentally with two baselines upon two public datasets, <i>UC-MERCED</i> and <i>NWPU-RESISC45</i>. The experiments assessed the performance of each approach under different amounts of labeled data. The impact of fine-tuning was also investigated. The proposed method delivered in our analysis the best overall accuracy under scarce labeled samples, both in terms of absolute value and in terms of variability across multiple runs.</p>
Style APA, Harvard, Vancouver, ISO itp.
42

Perruchet, Pierre, i Annie Vinter. "Feature creation as a byproduct of attentional processing". Behavioral and Brain Sciences 21, nr 1 (luty 1998): 33–34. http://dx.doi.org/10.1017/s0140525x9844010x.

Pełny tekst źródła
Streszczenie:
Attributing the creation of new features to categorization requirements implies that the exemplars displayed are correctly assigned to their category. This constraint limits the scope of Schyns et al.'s proposal to supervised learning. We present data suggesting that this constraint is unwarranted and we argue that feature creation is better thought of as a byproduct of the attentional, on-line processing of incoming information.
Style APA, Harvard, Vancouver, ISO itp.
43

Jiang, Zigui, Rongheng Lin i Fangchun Yang. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data". Energies 11, nr 9 (26.08.2018): 2235. http://dx.doi.org/10.3390/en11092235.

Pełny tekst źródła
Streszczenie:
Time-series smart meter data can record precisely electricity consumption behaviors of every consumer in the smart grid system. A better understanding of consumption behaviors and an effective consumer categorization based on the similarity of these behaviors can be helpful for flexible demand management and effective energy control. In this paper, we propose a hybrid machine learning model including both unsupervised clustering and supervised classification for categorizing consumers based on the similarity of their typical electricity consumption behaviors. Unsupervised clustering algorithm is used to extract the typical electricity consumption behaviors and perform fuzzy consumer categorization, followed by a proposed novel algorithm to identify distinct consumer categories and their consumption characteristics. Supervised classification algorithm is used to classify new consumers and evaluate the validity of the identified categories. The proposed model is applied to a real dataset of U.S. non-residential consumers collected by smart meters over one year. The results indicate that large or special institutions usually have their distinct consumption characteristics while others such as some medium and small institutions or similar building types may have the same characteristics. Moreover, the comparison results with other methods show the improved performance of the proposed model in terms of category identification and classifying accuracy.
Style APA, Harvard, Vancouver, ISO itp.
44

Feng, Songhe, Weihua Xiong, Bing Li, Congyan Lang i Xiankai Huang. "Hierarchical sparse representation based Multi-Instance Semi-Supervised Learning with application to image categorization". Signal Processing 94 (styczeń 2014): 595–607. http://dx.doi.org/10.1016/j.sigpro.2013.07.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lin, Zhongqi, Jingdun Jia, Wanlin Gao i Feng Huang. "A novel quadruple generative adversarial network for semi-supervised categorization of low-resolution images". Neurocomputing 415 (listopad 2020): 266–85. http://dx.doi.org/10.1016/j.neucom.2020.05.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Love, Bradley C. "Environment and Goals Jointly Direct Category Acquisition". Current Directions in Psychological Science 14, nr 4 (sierpień 2005): 195–99. http://dx.doi.org/10.1111/j.0963-7214.2005.00363.x.

Pełny tekst źródła
Streszczenie:
Developing categorization schemes involves discovering structures in the world that support a learner's goals. Existing models of category learning, such as exemplar and prototype models, neglect the role of goals in shaping conceptual organization. Here, a clustering approach is discussed that reflects the joint influences of the environment and goals in directing category acquisition. Clusters are a flexible representational medium that exhibits properties of exemplar, prototype, and rule-based models. Clusters reflect the natural bundles of correlated features present in our environment. The clustering model Supervised and Unsupervised Stratified Incremental Adaptive Network (SUSTAIN) operates by assuming the world has a simple structure and adding complexity (i.e., clusters) when existing clusters fail to satisfy the learner's goals and thus elicit surprise. Although simple, this operation is sufficient to address findings from numerous laboratory and cross-cultural categorization studies.
Style APA, Harvard, Vancouver, ISO itp.
47

Aphinyanaphongs, Yindalon, Lawrence D. Fu, Zhiguo Li, Eric R. Peskin, Efstratios Efstathiadis, Constantin F. Aliferis i Alexander Statnikov. "A comprehensive empirical comparison of modern supervised classification and feature selection methods for text categorization". Journal of the Association for Information Science and Technology 65, nr 10 (1.03.2014): 1964–87. http://dx.doi.org/10.1002/asi.23110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Chen, Peng, Peng Li, Qing Li i Dezheng Zhang. "Semi-Supervised Fine-Grained Image Categorization Using Transfer Learning With Hierarchical Multi-Scale Adversarial Networks". IEEE Access 7 (2019): 118650–68. http://dx.doi.org/10.1109/access.2019.2934476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Geraldeli Rossi, Rafael, Alneu de Andrade Lopes i Solange Oliveira Rezende. "Using bipartite heterogeneous networks to speed up inductive semi-supervised learning and improve automatic text categorization". Knowledge-Based Systems 132 (wrzesień 2017): 94–118. http://dx.doi.org/10.1016/j.knosys.2017.06.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Benkhalifa, Mohammed, Abdelhak Mouradi i Houssaine Bouyakhf. "Integrating WordNet knowledge to supplement training data in semi-supervised agglomerative hierarchical clustering for text categorization". International Journal of Intelligent Systems 16, nr 8 (2001): 929–47. http://dx.doi.org/10.1002/int.1042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii