Gotowa bibliografia na temat „Superconducting quantum devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Superconducting quantum devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Superconducting quantum devices"
Su, Fei-Fan, Zhao-Hua Yang, Shou-Kuan Zhao, Hai-Sheng Yan, Ye Tian i Shi-Ping Zhao. "Fabrication of superconducting qubits and auxiliary devices with niobium base layer". Acta Physica Sinica 71, nr 5 (2022): 050303. http://dx.doi.org/10.7498/aps.71.20211865.
Pełny tekst źródłaShi, Wenbo, i Robert Malaney. "Entanglement of Signal Paths via Noisy Superconducting Quantum Devices". Entropy 25, nr 1 (12.01.2023): 153. http://dx.doi.org/10.3390/e25010153.
Pełny tekst źródłaDhakal, Pashupati. "Superconducting Radio Frequency Resonators for Quantum Computing: A Short Review". Journal of Nepal Physical Society 7, nr 3 (31.12.2021): 1–5. http://dx.doi.org/10.3126/jnphyssoc.v7i3.42179.
Pełny tekst źródłaSong, Chao, Jing Cui, H. Wang, J. Hao, H. Feng i Ying Li. "Quantum computation with universal error mitigation on a superconducting quantum processor". Science Advances 5, nr 9 (wrzesień 2019): eaaw5686. http://dx.doi.org/10.1126/sciadv.aaw5686.
Pełny tekst źródłaCastellano, M. G. "Macroscopic quantum behavior of superconducting quantum interference devices". Fortschritte der Physik 51, nr 45 (7.05.2003): 288–94. http://dx.doi.org/10.1002/prop.200310041.
Pełny tekst źródłaCHIARELLO, F., M. G. CASTELLANO, R. LEONI, G. TORRIOLI, C. COSMELLI i P. CARELLI. "JOSEPHSON DEVICES FOR QUANTUM COMPUTING". International Journal of Modern Physics B 17, nr 04n06 (10.03.2003): 675–79. http://dx.doi.org/10.1142/s021797920301642x.
Pełny tekst źródłaDe Luca, R. "Equivalent Single-Junction Model of Superconducting Quantum Interference Devices in the Presence of Time-Varying Fields". ISRN Condensed Matter Physics 2011 (30.11.2011): 1–5. http://dx.doi.org/10.5402/2011/724384.
Pełny tekst źródłaPegrum, Colin. "Modelling high- Tc electronics". Superconductor Science and Technology 36, nr 5 (9.03.2023): 053001. http://dx.doi.org/10.1088/1361-6668/acbb35.
Pełny tekst źródłaMutsenik, E., S. Linzen, E. Il’ichev, M. Schmelz, M. Ziegler, V. Ripka, B. Steinbach, G. Oelsner, U. Hübner i R. Stolz. "Superconducting NbN-Al hybrid technology for quantum devices". Low Temperature Physics 49, nr 1 (styczeń 2023): 92–95. http://dx.doi.org/10.1063/10.0016481.
Pełny tekst źródłaVettoliere, Antonio, i Carmine Granata. "Picoammeters Based on Gradiometric Superconducting Quantum Interference Devices". Applied Sciences 12, nr 18 (8.09.2022): 9030. http://dx.doi.org/10.3390/app12189030.
Pełny tekst źródłaRozprawy doktorskie na temat "Superconducting quantum devices"
Baker, Luke James. "Superconducting nanowire devices for optical quantum information processing". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/8440/.
Pełny tekst źródłaJudge, Elizabeth Eileen. "Direct measurement of dissipative forces in superconducting BSCCO". Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035957.
Pełny tekst źródłaAkram, Uzma. "Quantum interference and cavity QED effects in a V-system /". [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17140.pdf.
Pełny tekst źródłaKilian, Anton Theo. "3-Axis geomagnetic magnetometer system design using superconducting quantum interference devices". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86452.
Pełny tekst źródłaENGLISH ABSTRACT: This work discusses the design of a 3-axis Geomagnetometer SQUID System (GSS), in which HTS SQUIDs are used unshielded. The initial GSS installed at SANSA was fully operable, however the LN2 evaporation rate and SQUID orientation required improving. Magnetic shields were also developed in case the SQUIDs would not operate unshielded and to test the system noise with geomagnetic variations removed. To enable removing the double layer shield from the probes while the SQUIDs remain submerged in LN2, the shield was designed to disassemble. The shields proved to be effective, however due to icing the shields could not be removed without removing the SQUIDs from the LN2.
AFRIKAANSE OPSOMMING: Hierdie werk bespreek die ontwerp van 'n 3-as Geomagnetometer SQUID Sisteem (GSS), waarin HTS SQUIDs sonder magnetiese skilde aangedryf word. Die aanvanklike GSS geïnstalleer by SANSA was ten volle binnewerking, maar die LN2 verdamping en SQUID oriëntasie benodig verbetering. Magnetiese skilde was ook ontwikkel vir die geval dat die SQUIDs nie sonder skilde wou werk nie en om die ruis te toets na geomagnetiese variasies verwyder is. Die dubbele laag skild was ontwerp om uitmekaar gehaal te word terwyl die SQUIDs binne die LN2 bly. Die skild was doeltreffend, maar ys het verhoed dat die skild verwyder kon word vanaf die LN2 sonder om die SQUIDs ook te verwyder.
Abi-Salloum, Tony Y. Narducci L. M. "Interference between competing pathways in the interaction of three-level atoms and radiation /". Philadelphia, Pa. : Drexel University, 2006. http://dspace.library.drexel.edu/handle/1860%20/858.
Pełny tekst źródłaMarthaler, Michael [Verfasser], i G. [Akademischer Betreuer] Schön. "Study of Quantum Electrodynamics in Superconducting Devices / Michael Marthaler. Betreuer: G. Schön". Karlsruhe : KIT-Bibliothek, 2009. http://d-nb.info/1014099854/34.
Pełny tekst źródłaGraf, zu Eulenburg Alexander. "High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometers". Thesis, University of Strathclyde, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366689.
Pełny tekst źródłaEgger, Daniel J. [Verfasser], i Frank K. [Akademischer Betreuer] Wilhelm-Mauch. "Optimal control and quantum simulations in superconducting quantum devices / Daniel J. Egger. Betreuer: Frank K. Wilhelm-Mauch". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1060715961/34.
Pełny tekst źródłaPodd, Gareth James. "MicroSQUIDs with independently controlled Josephson junctions". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613267.
Pełny tekst źródłaOgunyanda, Kehinde. "A superconducting quantum interference device (SQUID) magnetometer for nanosatellite space weather missions". Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/1164.
Pełny tekst źródłaIn order to effectively determine the occurrences of space weather anomalies in near Earth orbit, a highly sensitive space-grade magnetometer system is needed for measuring changes in the Earth’s magnetic field, which is the aftermath of space weather storms. This research is a foundational work, aimed at evaluating a commercial-off-the-shelf (COTS) high temperature DC SQUID (superconducting quantum interference device) magnetometer, and establishing the possibility of using it for space weather applications. A SQUID magnetometer is a magnetic field measuring in strument that produces an electrical signal relative to the sensed external magnetic field intensity.
Książki na temat "Superconducting quantum devices"
Hadfield, Robert H., i Göran Johansson, red. Superconducting Devices in Quantum Optics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24091-6.
Pełny tekst źródła1939-, Barone Antonio, red. Principles and applications of superconducting quantum interference devices. Singapore: World Scientific, 1992.
Znajdź pełny tekst źródła1934-, Weinstock Harold, i NATO Advanced Study Institute on SQUID Sensors: Fundamentals, Febrication, and Appliations (1995 : Acquafredda di Maratea, Italy), red. SQUID sensors: Fundamentals, fabrication, and applications. Dordrecht: Kluwer Academic Publishers, 1996.
Znajdź pełny tekst źródła1930-, Hahlbohm H. D., i Lübbig H. 1932, red. SQUID '85, superconducting quantum interference devices and their applications: Proceedings of the Third International Conference on Superconducting Quantum Devices, Berlin (West), June 25-28, 1985. Berlin: W. de Gruyter, 1985.
Znajdź pełny tekst źródłaKeene, Mark Nicholas. The electrical and magnetic properties of superconducting quantum interference devices. Birmingham: University of Birmingham, 1988.
Znajdź pełny tekst źródłaJ, Clarke, i Braginski A. I, red. The SQUID handbook. Weinheim: Wiley-VCH, 2004.
Znajdź pełny tekst źródłaL, Kautz R., i National Institute of Standards and Technology (U.S.), red. SQUIDs past, present, and future: A symposium in honor of James E. Zimmerman. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Znajdź pełny tekst źródłaHarrop, Sean Patrick. Magnetic noise properties of ceramic high temperature superconducting quantum interference devices. Birmingham: University of Birmingham, 1991.
Znajdź pełny tekst źródłaVleeming, Bertus Johan. The four-terminal SQUID. [Leiden: University of Leiden, 1998.
Znajdź pełny tekst źródłaFrancesco, De Martini, Denardo G. 1935-, Zeilinger Anton, International Centre for Theoretical Physics., International Atomic Energy Agency i Unesco, red. Proceedings of the Adriatico Workshop on Quantum Interferometry: 2-5 March 1993, Trieste, Italy. Singapore: World Scientific, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Superconducting quantum devices"
Rogalla, H., i C. Heiden. "High-Tc Josephson Contacts and Devices". W Superconducting Quantum Electronics, 80–127. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_4.
Pełny tekst źródłaAnnett, James F., Balazs L. Gyorffy i Timothy P. Spiller. "Superconducting Devices for Quantum Computation". W Exotic States in Quantum Nanostructures, 165–212. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9974-0_5.
Pełny tekst źródłaPartanen, M., K. Y. Tan, S. Masuda, E. Hyyppä, M. Jenei, J. Goetz, V. Sevriuk, M. Silveri i M. Möttönen. "Quantum-Circuit Refrigeration for Superconducting Devices". W 21st Century Nanoscience – A Handbook, 12–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351594-12.
Pełny tekst źródłaTinkham, M. "Superconducting Nanoparticles and Nanowires". W Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, 349–60. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4327-1_23.
Pełny tekst źródłaAverin, D. V. "Quantum Nondemolition Measurements of a Qubit". W International Workshop on Superconducting Nano-Electronics Devices, 1–10. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_1.
Pełny tekst źródłaCorato, Valentina, Carmine Granata, Luigi Longobardi, Maurizio Russo, Berardo Ruggiero i Paolo Silvestrini. "Josephson Systems for Quantum Coherence Experiments". W International Workshop on Superconducting Nano-Electronics Devices, 33–41. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_5.
Pełny tekst źródłaTamura, Kentaro, i Yutaka Shikano. "Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer". W International Symposium on Mathematics, Quantum Theory, and Cryptography, 17–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_6.
Pełny tekst źródłaKorotkov, Alexander. "Bayesian Quantum Measurement of a Single-Cooper-Pair Qubit". W International Workshop on Superconducting Nano-Electronics Devices, 11–13. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_2.
Pełny tekst źródłaSemenov, Alexei D., Heinz-Wilhelm Hübers, Gregory N. Gol’tsman i Konstantin Smirnov. "Superconducting Quantum Detector for Astronomy and X -Ray Spectroscopy". W International Workshop on Superconducting Nano-Electronics Devices, 201–10. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_22.
Pełny tekst źródłaCampagnano, G., D. Giuliano i A. Tagliacozzo. "Josephson Versus Kondo Coupling at A Quantum Dot With Superconducting Contacts". W International Workshop on Superconducting Nano-Electronics Devices, 227–39. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_25.
Pełny tekst źródłaStreszczenia konferencji na temat "Superconducting quantum devices"
Dumke, Rainer, Deshui Yu, Christoph Hufnagel, Alessandro Landra i Lim Chin Chean. "Superconducting atom chips: towards quantum hybridization". W Quantum Photonic Devices, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2275929.
Pełny tekst źródłaHöpker, Jan Philipp, Moritz Bartnick, Evan Meyer-Scott, Frederik Thiele, Torsten Meier, Tim Bartley, Stephan Krapick i in. "Towards integrated superconducting detectors on lithium niobate waveguides". W Quantum Photonic Devices, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2273388.
Pełny tekst źródłaNakamura, Y. "Engineering superconducting quantum circuits". W 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.e-1-01.
Pełny tekst źródłaJanicek, Frantisek, Anton Cerman, Milan Perny, Igor Brilla, Lubomir Marko i Stefan Motycak. "Applications of superconducting quantum interference devices". W 2015 16th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2015. http://dx.doi.org/10.1109/epe.2015.7161204.
Pełny tekst źródłaPernice, Wolfram H. P., i Wladick Hartmann. "Cavity-enhanced superconducting single photon detectors (Conference Presentation)". W Quantum Photonic Devices 2018, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2323861.
Pełny tekst źródłaKandala, Abhinav. "Quantum computation with superconducting qubits". W 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.i-4-01.
Pełny tekst źródłaTong, Yukai, Changlong Zhu, Xueqian Wang i Jing Zhang. "Controlling chaos in superconducting quantum interference devices". W 2017 36th Chinese Control Conference (CCC). IEEE, 2017. http://dx.doi.org/10.23919/chicc.2017.8027478.
Pełny tekst źródłaNersisyan, Ani, Eyob A. Sete, Sam Stanwyck, Andrew Bestwick, Matthew Reagor, Stefano Poletto, Nasser Alidoust i in. "Manufacturing low dissipation superconducting quantum processors". W 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019. http://dx.doi.org/10.1109/iedm19573.2019.8993458.
Pełny tekst źródłaVan Duzer, T. "Single-flux-quantum logic". W Progress in High-Temperature Superconducting Transistors and Other Devices II. SPIE, 1992. http://dx.doi.org/10.1117/12.2321840.
Pełny tekst źródłaMorozov, Dmitry V., Gregor G. Taylor, Kleanthis Erotokritou, Shigehito Miki, Hirotaka Terai i Robert H. Hadfield. "Mid-infrared photon counting with superconducting nanowires". W Quantum Nanophotonic Materials, Devices, and Systems 2021, redaktorzy Mario Agio, Cesare Soci i Matthew T. Sheldon. SPIE, 2021. http://dx.doi.org/10.1117/12.2597196.
Pełny tekst źródłaRaporty organizacyjne na temat "Superconducting quantum devices"
Orlando, Terry P. Quantum Computation with Superconducting Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada480997.
Pełny tekst źródłaOrlando, T. P., J. E. Mooij i Seth Lloyd. Quantum Computation With Mesoscopic Superconducting Devices. Fort Belvoir, VA: Defense Technical Information Center, maj 2002. http://dx.doi.org/10.21236/ada414413.
Pełny tekst źródłaOrlando, Terry P. Student Support for Quantum Computation With Superconducting Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2005. http://dx.doi.org/10.21236/ada430138.
Pełny tekst źródłaHan, Siyuan. (DEPSCOR 99) Experimental Investigation of Superconducting Quantum Interference Devices as Solid State Qubits for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, październik 2002. http://dx.doi.org/10.21236/ada416906.
Pełny tekst źródłaNordman, James E. Superconductive Electronic Devices Using Flux Quanta. Fort Belvoir, VA: Defense Technical Information Center, luty 1996. http://dx.doi.org/10.21236/ada310962.
Pełny tekst źródłaDrukier, A. K., N. Cao i K. Carroll. Computer-Oriented, Multichannel, Direct-Current, Superconducting Quantum Interference Device. Fort Belvoir, VA: Defense Technical Information Center, maj 1989. http://dx.doi.org/10.21236/ada222636.
Pełny tekst źródłaNEOCERA INC COLLEGE PARK MD. High Temperature Superconductor (HTS) Superconducting QUantum Interference Device (SQUID) Microscope. Fort Belvoir, VA: Defense Technical Information Center, październik 1994. http://dx.doi.org/10.21236/ada285875.
Pełny tekst źródłaKinion, D. Development of a Quantum-Limited Microwave Amplifier using a dc Superconducting Quantum Interference Device (dc-SQUID). Office of Scientific and Technical Information (OSTI), grudzień 2006. http://dx.doi.org/10.2172/1036875.
Pełny tekst źródłaMyers, Whittier Ryan. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device. Office of Scientific and Technical Information (OSTI), styczeń 2006. http://dx.doi.org/10.2172/901227.
Pełny tekst źródłaKrauss, R. H. Jr, E. Flynn i P. Ruminer. Experimental validation of superconducting quantum interference device sensors for electromagnetic scattering in geologic structures. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/532685.
Pełny tekst źródła