Gotowa bibliografia na temat „SUPERCONDUCTING NANOSTRUCTURE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „SUPERCONDUCTING NANOSTRUCTURE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "SUPERCONDUCTING NANOSTRUCTURE"
LYUKSYUTOV, I. F. "CONTROLLING SUPERCONDUCTIVITY WITH MAGNETIC NANOSTRUCTURES". International Journal of Modern Physics B 27, nr 15 (4.06.2013): 1362004. http://dx.doi.org/10.1142/s021797921362004x.
Pełny tekst źródłaShlyakhova, G. V., S. A. Barannikova i L. B. Zuev. "Nanostructure of superconducting Nb-Ti cable". Steel in Translation 43, nr 10 (październik 2013): 640–43. http://dx.doi.org/10.3103/s0967091213100124.
Pełny tekst źródłaLazarev, B. G., V. A. Ksenofontov, I. M. Mikhailovskii i O. A. Velikodnaya. "Nanostructure of superconducting Nb–Ti alloys". Low Temperature Physics 24, nr 3 (marzec 1998): 205–9. http://dx.doi.org/10.1063/1.593572.
Pełny tekst źródłaHoride, Tomoya, Hiromu Katagiri, Ataru Ichinose i Kaname Matsumoto. "Fabrication of Fe(Te,Se) films added with oxide or chalcogenide: Influence of added material on phase formation and superconducting properties". Journal of Applied Physics 131, nr 10 (14.03.2022): 103901. http://dx.doi.org/10.1063/5.0085234.
Pełny tekst źródłaTarasov, Mikhail, Andrey Lomov, Artem Chekushkin, Mikhail Fominsky, Denis Zakharov, Andrey Tatarintsev, Sergey Kraevsky i Anton Shadrin. "Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices". Nanomaterials 13, nr 13 (4.07.2023): 2002. http://dx.doi.org/10.3390/nano13132002.
Pełny tekst źródłaSavostin, E. O., i N. A. Pertsev. "Superconducting straintronics via the proximity effect in superconductor–ferromagnet nanostructures". Nanoscale 12, nr 2 (2020): 648–57. http://dx.doi.org/10.1039/c9nr06739f.
Pełny tekst źródłaZhilyaev, Ivan. "Nanostructure Model for Superconducting State of High-Temperature Superconductors-Cuprates". Quantum Matter 4, nr 4 (1.08.2015): 334–38. http://dx.doi.org/10.1166/qm.2015.1202.
Pełny tekst źródłaAlkaabi, Zaid K., i Emad K. Al-Shakarchi. "Studying the Physical Properties of Bi-2223 Nanostructure Prepared Thermal Treatment Method". Materials Science Forum 1039 (20.07.2021): 269–73. http://dx.doi.org/10.4028/www.scientific.net/msf.1039.269.
Pełny tekst źródłaPrikhna, T. A., A. P. Shapovalov, G. E. Grechnev, V. G. Boutko, A. A. Gusev, A. V. Kozyrev, M. A. Belogolovskiy, V. E. Moshchil i V. B. Sverdun. "Formation of nanostructure in magnesium diboride based materials with high superconducting characteristics". Low Temperature Physics 42, nr 5 (maj 2016): 380–94. http://dx.doi.org/10.1063/1.4952985.
Pełny tekst źródłaTsai, J. S., Y. Nakamura i YU Pashkin. "Qubit utilizing charge-number state in super conducting nanostructure". Quantum Information and Computation 1, Special (grudzień 2001): 124–28. http://dx.doi.org/10.26421/qic1.s-13.
Pełny tekst źródłaRozprawy doktorskie na temat "SUPERCONDUCTING NANOSTRUCTURE"
Leadbeater, Mark. "Quantum dynamics of superconducting nanostructures". Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337369.
Pełny tekst źródłaYi, Ge. "Single-crystal superconducting Pb nanowires and nanostructures". Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266955.
Pełny tekst źródłaTaddei, Fabio. "Spin-polarized transport in superconducting and ferromagnetic nanostructures". Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369499.
Pełny tekst źródłaSeviour, Robert Francis. "Quasiclassical studies of phase-coherent transport in superconducting nanostructures". Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310577.
Pełny tekst źródłaSrivastava, Gauri. "Low temperature measurement of thermopower in mesoscopic normal/superconducting nanostructures". Thesis, Royal Holloway, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430893.
Pełny tekst źródłaBerritta, Marco. "Coherent Nanostructures: Dynamics control and noise". Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1432.
Pełny tekst źródłaTroadec, Cedric. "Hybrid superconducting/ferromagnetic metallic nanostructures : fabrication and study of the proximity effect". Thesis, Royal Holloway, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271188.
Pełny tekst źródłaFutterer, David [Verfasser], Jürgen [Akademischer Betreuer] König i Karsten [Akademischer Betreuer] Flensberg. "Transport through Hybrid Superconducting/Normal Nanostructures / David Futterer. Gutachter: Karsten Flensberg. Betreuer: Jürgen König". Duisburg, 2013. http://d-nb.info/1031380183/34.
Pełny tekst źródłaKraft, Rainer [Verfasser], i W. [Akademischer Betreuer] Wernsdorfer. "Gate-defined superconducting nanostructures in bilayer graphene weak links / Rainer Kraft ; Betreuer: W. Wernsdorfer". Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1211006441/34.
Pełny tekst źródłaAabdin, Zainul [Verfasser], i Oliver [Akademischer Betreuer] Eibl. "Structural Characterization and Structure-property Correlation of Nanostructured Superconducting Coated Conductors and Thermoelectric Materials / Zainul Aabdin ; Betreuer: Oliver Eibl". Tübingen : Universitätsbibliothek Tübingen, 2013. http://d-nb.info/1162844361/34.
Pełny tekst źródłaKsiążki na temat "SUPERCONDUCTING NANOSTRUCTURE"
A, Reed Mark, Kirk Wiley P i International Symposium on Nanostructure Physics and Fabrication (1st : 1989 : Texas A&M University), red. Nanostructure physics and fabrication: Proceedings of the international symposium, College Station, Texas, March 13-15, 1989. Boston: Academic Press, 1989.
Znajdź pełny tekst źródłaSidorenko, Anatolie, red. Functional Nanostructures and Metamaterials for Superconducting Spintronics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90481-8.
Pełny tekst źródłaRomania) Japanese-Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic Superconducting and Nano Materials (6th 2009 Bucharest. Applied electromagnetic engineering for magnetic superconducting and nanomaterials. Stafa-Zuerich: Trans Tech, 2011.
Znajdź pełny tekst źródłaInternational Symposium on Explosion, Shock Wave and Hypervelocity Phenomena (2nd 2007 Kumamoto, Japan). Explosion, shock wave and hypervelocity phenomena in materials II: Selected peer reviewed papers from the 2nd International Symposium on Explosion, Shock Wave and Hypervelocity Phenomena (ESHP-2), 6-9 March 2007, Kumamoto, Japan. Stafa-Zurich, Switzerland: Trans Tech Publications, 2008.
Znajdź pełny tekst źródłaNanostructure Physics and Fabrication: Proceedings of the International Symposium, College Station, Texas, March 13*b115, 1989. Academic Press, 1989.
Znajdź pełny tekst źródła(Editor), Mark A. Reed, i Wiley P. Kirk (Editor), red. Nanostructure Physics and Fabrication: Proceedings of the International Symposium, College Station, Texas, March 13*b115, 1989. Academic Press, 1989.
Znajdź pełny tekst źródłaKirk, Wiley P., i Mark A. Reed. Nanostructure Physics and Fabrication: Proceedings of the International Symposium, College Station, Texas, March 13*b115 1989. Elsevier Science & Technology Books, 2012.
Znajdź pełny tekst źródłaSidorenko, Anatolie. Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures. Springer International Publishing AG, 2019.
Znajdź pełny tekst źródłaSidorenko, Anatolie. Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures. Springer, 2018.
Znajdź pełny tekst źródłaCuevas, J. C., D. Roditchev, T. Cren i C. Brun. Proximity Effect A New Insight from In Situ Fabricated Hybrid Nanostructures. Redaktor A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.4.
Pełny tekst źródłaCzęści książek na temat "SUPERCONDUCTING NANOSTRUCTURE"
Annett, James F., Balazs L. Gyorffy i Timothy P. Spiller. "Superconducting Devices for Quantum Computation". W Exotic States in Quantum Nanostructures, 165–212. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9974-0_5.
Pełny tekst źródłaMiu, L., P. Mele, I. Ivan, A. M. Ionescu, A. Crisan, P. Badica i D. Miu. "Magnetization Relaxation in Superconducting YBa2Cu3O7 Films with Embedded Nanorods and Nanoparticles". W Size Effects in Nanostructures, 293–317. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44479-5_9.
Pełny tekst źródłaMiura, Masashi. "Nanostructured Oxide Superconducting Films Prepared by Metal Organic Deposition". W Oxide Thin Films, Multilayers, and Nanocomposites, 3–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14478-8_1.
Pełny tekst źródłaSidorenko, A. S., D. Lenk, V. I. Zdravkov, R. Morari, A. Ullrich, C. Müller, H. A. Krug von Nidda, S. Horn, L. R. Tagirov i R. Tidecks. "Cobalt/Cobaltoxide Exchange Bias System for Diluted Ferromagnetic Alloy Films in Superconducting Spin-Valves". W Nanostructures and Thin Films for Multifunctional Applications, 301–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30198-3_9.
Pełny tekst źródłaCórdoba Castillo, Rosa. "Superconducting Tungsten-Based Nanodeposits Grown by Focused Ion Beam Induced Deposition". W Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition, 95–132. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02081-5_5.
Pełny tekst źródłaTanatar, M. A. "Layered Superconductors in Oriented Magnetic Field. Probing the Superconducting State with Thermal Conductivity". W Molecular Low Dimensional and Nanostructured Materials for Advanced Applications, 233–42. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0349-0_22.
Pełny tekst źródłaÖzçelik, Bekir, G. Çetin, M. Gürsul, M. A. Torres, M. A. Madre i A. Sotelo. "Processing of Superconducting and Thermoelectric Bulk Materials Via Laser Technologies". W Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security, 297–312. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-1909-2_21.
Pełny tekst źródłaPeikrishvili, Akaki, Giorgi Tavadze, Bagrat Godibadze, Grigor Mamniashvili i Alexander Shengelaya. "Hot Shock Wave Fabrication of Nanostructured Superconductive MgB2 and MgB2-Fe Composites". W Advanced Materials, Polymers, and Composites, 239–52. New York: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003105015-18.
Pełny tekst źródłaGranata, C., B. Ruggiero, O. Talamo, M. Fretto, N. De Leo, V. Lacquaniti, D. Massarotti, F. Tafuri, P. Silbestrini i A. Vettoliere. "Nanostructured Superconductive Sensors Based on Quantum Interference Effect for High Sensitive Nanoscale Applications". W Lecture Notes in Electrical Engineering, 25–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55077-0_4.
Pełny tekst źródłaBeenakker, C. W. J., i H. van Houten. "THE SUPERCONDUCTING QUANTUM POINT CONTACT". W Nanostructures and Mesoscopic Systems, 481–97. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-12-409660-8.50051-1.
Pełny tekst źródłaStreszczenia konferencji na temat "SUPERCONDUCTING NANOSTRUCTURE"
Mikheenko, Pavlo, Manoel Jacquemin, Masih Mojarrad i Frederic Mercier. "Controlling Dendritic Flux Avalanches by Nanostructure of Superconducting Films". W 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934256.
Pełny tekst źródłaPRISCHEPA, S. L., C. CIRILLO, C. ATTANASIO i M. Yu KUPRIYANOV. "NONVOLATILE SUPERCONDUCTING VALVE ON THE BASE OF FERROMAGNET/SUPERCONDUCTOR NANOSTRUCTURE". W Proceedings of International Conference Nanomeeting – 2013. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814460187_0144.
Pełny tekst źródłaPRISCHEPA, S. L., V. N. KUSHNIR, M. L. DELLA ROCCA i C. ATTANASIO. "NUCLEATION OF SUPERCONDUCTING PHASE IN MULTILAYERED NANOSTRUCTURES". W Physics, Chemistry and Application of Nanostructures - Reviews and Short Notes to Nanomeeting 2003. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796738_0117.
Pełny tekst źródłaGIAZOTTO, F., F. TADDEI, F. BELTRAM i R. FAZIO. "MANIPULATION OF MAGNETIZATION IN NONEQUILIBRIUM SUPERCONDUCTING NANOSTRUCTURES". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0013.
Pełny tekst źródłaIchkitidze, Levan P., Dmitry V. Telyshev i Sergei V. Selishchev. "Nanostructured superconducting thin-film magnetic field concentrator". W 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2017. http://dx.doi.org/10.1109/eiconrus.2017.7910483.
Pełny tekst źródłaHayashi, Masahiko, Hiromichi Ebisawa i Masaru Kato. "Phase Transition and Fluctuations in Superconducting Nanostructures". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354934.
Pełny tekst źródłaLambert, C. J. "Phase-coherent transport in hybrid superconducting nanostructures". W Lectures on superconductivity in networks and mesoscopic systems. AIP, 1998. http://dx.doi.org/10.1063/1.55283.
Pełny tekst źródłaMargadonna, Serena, i Kosmas Prassides. "Structural studies of superconducting". W ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59871.
Pełny tekst źródłaShukrinov, Yu M., I. R. Rahmonov i A. E. Botha. "Dynamics of anomalous Josephson effect in superconducting nanostructures". W LOW-DIMENSIONAL MATERIALS: THEORY, MODELING, EXPERIMENT, DUBNA 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0099084.
Pełny tekst źródłaLang, W., B. Aichner, G. Zechner, F. Jausner, R. Puzniak, A. Klimov, W. Slysz i in. "Superconducting Fluctuations and Magnetic Properties of NbN/NiCu and NbTiN/NiCu Bilayer Nanostructures for Photon Detection". W 2017 16th International Superconductive Electronics Conference (ISEC). IEEE, 2017. http://dx.doi.org/10.1109/isec.2017.8314232.
Pełny tekst źródła