Artykuły w czasopismach na temat „Sulfur Dot”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Sulfur Dot”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Xueliang, Kuan Hu, Ruwen Tang, Kun Zhao i Yunsheng Ding. "CuS quantum dot modified carbon aerogel as an immobilizer for lithium polysulfides for high-performance lithium–sulfur batteries". RSC Advances 6, nr 75 (2016): 71319–27. http://dx.doi.org/10.1039/c6ra11990e.
Pełny tekst źródłaBrubaker, Cole D., Talitha M. Frecker, James R. McBride, Kemar R. Reid, G. Kane Jennings, Sandra J. Rosenthal i Douglas E. Adams. "Incorporation of fluorescent quantum dots for 3D printing and additive manufacturing applications". Journal of Materials Chemistry C 6, nr 28 (2018): 7584–93. http://dx.doi.org/10.1039/c8tc02024h.
Pełny tekst źródłaJian, Zhixu, Shichao Zhang, Xianggang Guan, Jiajie Li, Honglei Li, Wenxu Wang, Yalan Xing i Huaizhe Xu. "ZnO quantum dot-modified rGO with enhanced electrochemical performance for lithium–sulfur batteries". RSC Advances 10, nr 54 (2020): 32966–75. http://dx.doi.org/10.1039/d0ra04986g.
Pełny tekst źródłaVeamatahau, Aisea, Bo Jiang, Tom Seifert, Satoshi Makuta, Kay Latham, Masayuki Kanehara, Toshiharu Teranishi i Yasuhiro Tachibana. "Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states". Physical Chemistry Chemical Physics 17, nr 4 (2015): 2850–58. http://dx.doi.org/10.1039/c4cp04761c.
Pełny tekst źródłaLuo, Zhimin, Dongliang Yang, Guangqin Qi, Jingzhi Shang, Huanping Yang, Yanlong Wang, Lihui Yuwen, Ting Yu, Wei Huang i Lianhui Wang. "Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction". J. Mater. Chem. A 2, nr 48 (2014): 20605–11. http://dx.doi.org/10.1039/c4ta05096g.
Pełny tekst źródłaYang, Ze, Juan Xiao, Jia-Yun Wan, Zhong-Guo Liu, Ting-Ting Cao, Wen-Jie Zhang i Hang-Xing Wang. "Graphene oxide/carbon dot composite: a new photoelectrode material for photocurrent response enhancement". Physical Chemistry Chemical Physics 17, nr 48 (2015): 32283–88. http://dx.doi.org/10.1039/c5cp05616k.
Pełny tekst źródłaYuan, Mingjian, Kyle W. Kemp, Susanna M. Thon, Jin Young Kim, Kang Wei Chou, Aram Amassian i Edward H. Sargent. "High-Performance Quantum-Dot Solids via Elemental Sulfur Synthesis". Advanced Materials 26, nr 21 (21.03.2014): 3513–19. http://dx.doi.org/10.1002/adma.201305912.
Pełny tekst źródłaAl Ghifari, Alvin Dior, Edi Sanjaya i Isnaeni Isnaeni. "Pengaruh Doping Nitrogen, Sulfur, dan Boron terhadap Spektrum Absorbansi dan Fotoluminesensi Karbon Dot Asam Sitrat". Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics 2, nr 2 (31.12.2019): 93–101. http://dx.doi.org/10.15408/fiziya.v2i2.11787.
Pełny tekst źródłaRasal, Akash S., Khalilalrahman Dehvari, Girum Getachew, Chiranjeevi Korupalli, Anil V. Ghule i Jia-Yaw Chang. "Efficient quantum dot-sensitized solar cells through sulfur-rich carbon nitride modified electrolytes". Nanoscale 13, nr 11 (2021): 5730–43. http://dx.doi.org/10.1039/d0nr07963d.
Pełny tekst źródłaMeng, Fanrong, Haoran Xu, Shuolin Wang, Jingxian Wei, Wengong Zhou, Qiang Wang, Peng Li, Fangong Kong i Yucang Zhang. "One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium(vi) and ascorbic acid detection". RSC Advances 12, nr 30 (2022): 19686–94. http://dx.doi.org/10.1039/d2ra01758j.
Pełny tekst źródłaPark, Joong Pill, Jin Hyuck Heo, Sang Hyuk Im i Sang-Wook Kim. "Highly efficient solid-state mesoscopic PbS with embedded CuS quantum dot-sensitized solar cells". Journal of Materials Chemistry A 4, nr 3 (2016): 785–90. http://dx.doi.org/10.1039/c5ta08668j.
Pełny tekst źródłaNemati, Fatemeh, Morteza Hosseini, Rouholah Zare-Dorabei i Mohammad Reza Ganjali. "Sensitive recognition of ethion in food samples using turn-on fluorescence N and S co-doped graphene quantum dots". Analytical Methods 10, nr 15 (2018): 1760–66. http://dx.doi.org/10.1039/c7ay02850d.
Pełny tekst źródłaTang, Jingmin, Masanori Sakamoto, Haruhisa Ohta i Ken-ichi Saitow. "1% defect enriches MoS2 quantum dot: catalysis and blue luminescence". Nanoscale 12, nr 7 (2020): 4352–58. http://dx.doi.org/10.1039/c9nr07612c.
Pełny tekst źródłaFan, Shengnan, Xiaoqing Li, Fanghui Ma, Minghui Yang, Juan Su i Xiang Chen. "Sulfur quantum dot based fluorescence assay for lactate dehydrogenase activity detection". Journal of Photochemistry and Photobiology A: Chemistry 430 (wrzesień 2022): 113989. http://dx.doi.org/10.1016/j.jphotochem.2022.113989.
Pełny tekst źródłaFan, Shengnan, Xiaoqing Li, Fanghui Ma, Minghui Yang, Juan Su i Xiang Chen. "Sulfur quantum dot based fluorescence assay for lactate dehydrogenase activity detection". Journal of Photochemistry and Photobiology A: Chemistry 430 (wrzesień 2022): 113989. http://dx.doi.org/10.1016/j.jphotochem.2022.113989.
Pełny tekst źródłaYang, Zusing, Chia-Ying Chen, Chi-Wei Liu i Huan-Tsung Chang. "Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells". Chemical Communications 46, nr 30 (2010): 5485. http://dx.doi.org/10.1039/c0cc00642d.
Pełny tekst źródłaKurka, Vladislav, Zdeněk Kuboň, Ladislav Kander, Petr Jonšta i Ondřej Kotásek. "The Effect of Bismuth on Technological and Material Characteristics of Low-Alloyed Automotive Steels with a Good Machinability". Metals 12, nr 2 (9.02.2022): 301. http://dx.doi.org/10.3390/met12020301.
Pełny tekst źródłaClarke, Samuel, Randall E. Mielke, Andrea Neal, Patricia Holden i Jay L. Nadeau. "Bacterial and Mineral Elements in an Arctic Biofilm: A Correlative Study Using Fluorescence and Electron Microscopy". Microscopy and Microanalysis 16, nr 2 (26.01.2010): 153–65. http://dx.doi.org/10.1017/s1431927609991334.
Pełny tekst źródłaLi, Fei, Lang Sun, Yi Luo, Ming Li, Yongjie Xu, Guanghui Hu, Xinyu Li i Liang Wang. "Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites". RSC Advances 8, nr 35 (2018): 19635–41. http://dx.doi.org/10.1039/c8ra02040j.
Pełny tekst źródłaDaniels, Craig, Patricia Godoy, Estrella Duque, M. Antonia Molina-Henares, Jesús de la Torre, José María del Arco, Carmen Herrera i in. "Global Regulation of Food Supply by Pseudomonas putida DOT-T1E". Journal of Bacteriology 192, nr 8 (5.02.2010): 2169–81. http://dx.doi.org/10.1128/jb.01129-09.
Pełny tekst źródłaNgoc Anh, Nguyen Thi, Pei-Yi Chang i Ruey-An Doong. "Sulfur-doped graphene quantum dot-based paper sensor for highly sensitive and selective detection of 4-nitrophenol in contaminated water and wastewater". RSC Advances 9, nr 46 (2019): 26588–97. http://dx.doi.org/10.1039/c9ra04414k.
Pełny tekst źródłaLu, Haixin, Hanqiang Zhang, Yufei Li i Feng Gan. "Sensitive and selective determination of tetracycline in milk based on sulfur quantum dot probes". RSC Advances 11, nr 37 (2021): 22960–68. http://dx.doi.org/10.1039/d1ra03745e.
Pełny tekst źródłaWang, Shan, Xing Bao, Bei Gao i Meng Li. "A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch”". Dalton Transactions 48, nr 23 (2019): 8288–96. http://dx.doi.org/10.1039/c9dt01186b.
Pełny tekst źródłaWang, Xiaobin, Yuqing Zhao, Qing Hua, Jiaojiao Lu, Feiyan Tang, Wenjie Sun, Feng Luan, Xuming Zhuang i Chunyuan Tian. "An ultrasensitive electrochemiluminescence biosensor for the detection of total bacterial count in environmental and biological samples based on a novel sulfur quantum dot luminophore". Analyst 147, nr 8 (2022): 1716–21. http://dx.doi.org/10.1039/d2an00153e.
Pełny tekst źródłaRavenschlag, Katrin, Kerstin Sahm, Jakob Pernthaler i Rudolf Amann. "High Bacterial Diversity in Permanently Cold Marine Sediments". Applied and Environmental Microbiology 65, nr 9 (1.09.1999): 3982–89. http://dx.doi.org/10.1128/aem.65.9.3982-3989.1999.
Pełny tekst źródłaJahani, Ghazaleh, Masoume Malmir i Majid M. Heravi. "Catalytic Oxidation of Alcohols over a Nitrogen- and Sulfur-Doped Graphitic Carbon Dot-Modified Magnetic Nanocomposite". Industrial & Engineering Chemistry Research 61, nr 5 (1.02.2022): 2010–22. http://dx.doi.org/10.1021/acs.iecr.1c04198.
Pełny tekst źródłaKang, Jin Soo, Jiho Kang, Jiyoung Chae, Yoon Jun Son, Juwon Jeong, Jin Kim, Jae-Yup Kim, Soon Hyung Kang, Kwang-Soon Ahn i Yung-Eun Sung. "Vapor-Deposited Tungsten Carbide Nano-Dendrites as Sulfur-Tolerant Electrocatalysts for Quantum Dot-Sensitized Solar Cells". Journal of The Electrochemical Society 165, nr 14 (2018): H954—H961. http://dx.doi.org/10.1149/2.0911814jes.
Pełny tekst źródłaChiu, Arlene, Eric Rong, Christianna Bambini, Yida Lin, Chengchangfeng Lu i Susanna M. Thon. "Sulfur-Infused Hole Transport Materials to Overcome Performance-Limiting Transport in Colloidal Quantum Dot Solar Cells". ACS Energy Letters 5, nr 9 (18.08.2020): 2897–904. http://dx.doi.org/10.1021/acsenergylett.0c01586.
Pełny tekst źródłaLi, Lu, Chao Yang, Yong Li, Yulun Nie i Xike Tian. "Sulfur quantum dot-based portable paper sensors for fluorometric and colorimetric dual-channel detection of cobalt". Journal of Materials Science 56, nr 7 (9.11.2020): 4782–96. http://dx.doi.org/10.1007/s10853-020-05544-z.
Pełny tekst źródłaAkhgari, Farhad, Naser Samadi, Khalil Farhadi i Mehrdad Akhgari. "A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin". Canadian Journal of Chemistry 95, nr 6 (czerwiec 2017): 641–48. http://dx.doi.org/10.1139/cjc-2016-0531.
Pełny tekst źródłaFavaro, Marco, Mattia Cattelan, Stephen W. T. Price, Andrea E. Russell, Laura Calvillo, Stefano Agnoli i Gaetano Granozzi. "In Situ Study of Graphene Oxide Quantum Dot-MoSx Nanohybrids as Hydrogen Evolution Catalysts". Surfaces 3, nr 2 (16.06.2020): 225–36. http://dx.doi.org/10.3390/surfaces3020017.
Pełny tekst źródłaMartins, Eduardo Constante, Edson Roberto Santana i Almir Spinelli. "Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks". Talanta 252 (styczeń 2023): 123836. http://dx.doi.org/10.1016/j.talanta.2022.123836.
Pełny tekst źródłaFang Wang, Huiming Zhang i Bin Xu. "Nitrogen and Sulfur Quantum Dot Co-Modified Graphene Nanosheet with Enhanced Photocatalytic Activity for Methyl Orange Degradation". Russian Journal of Physical Chemistry A 94, nr 11 (30.10.2020): 2299–305. http://dx.doi.org/10.1134/s0036024420110333.
Pełny tekst źródłaXu, Wenjiao, Yuxiu Sun, Bin Ding i Jingbo Zhang. "Zeolitic-imidazolate frameworks derived Pt-free counter electrodes for high-performance quantum dot-sensitized solar cells". Royal Society Open Science 5, nr 5 (maj 2018): 180335. http://dx.doi.org/10.1098/rsos.180335.
Pełny tekst źródłaXiao, Tingjiao, Fengjin Yi, Mingzhi Yang, Weiliang Liu, Mei Li, Manman Ren, Xu Zhang i Zhen Zhou. "A composite of CoNiP quantum dot-decorated reduced graphene oxide as a sulfur host for Li–S batteries". Journal of Materials Chemistry A 9, nr 31 (2021): 16692–98. http://dx.doi.org/10.1039/d1ta03608d.
Pełny tekst źródłaHmar, Jehova Jire L., Tanmoy Majumder, Saurab Dhar i Suvra Prakash Mondal. "Sulfur and Nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications". Thin Solid Films 612 (sierpień 2016): 274–83. http://dx.doi.org/10.1016/j.tsf.2016.06.014.
Pełny tekst źródłaLi, Yue, Jia Wang, Yaqiong Yang i Suqin Han. "Sulfur and nitrogen co‐doped graphene quantum dot‐assisted chemiluminescence for sensitive detection of tryptophan and mercury (II)". Luminescence 35, nr 5 (26.01.2020): 773–80. http://dx.doi.org/10.1002/bio.3783.
Pełny tekst źródłaChen, Hongyan, Guoli Fu, Xupeng Xu, Xuming Xu, Wenqi Ju, Zengsheng Ma, Xinming Wang i Weixin Lei. "NiO quantum dot-modified high specific surface carbon aerogel materials as an advanced host for lithium-sulfur batteries". Electrochimica Acta 467 (listopad 2023): 143087. http://dx.doi.org/10.1016/j.electacta.2023.143087.
Pełny tekst źródłaMajumder, Tanmoy, Saurab Dhar, Pinak Chakraborty, Kamalesh Debnath i Suvra Prakash Mondal. "S, N Co-Doped Graphene Quantum Dots Decorated C-Doped ZnO Nanotaper Photoanodes for Solar Cells Applications". Nano 14, nr 01 (styczeń 2019): 1950012. http://dx.doi.org/10.1142/s1793292019500127.
Pełny tekst źródłaCoolen, Marco J. L., i Jörg Overmann. "Analysis of Subfossil Molecular Remains of Purple Sulfur Bacteria in a Lake Sediment". Applied and Environmental Microbiology 64, nr 11 (1.11.1998): 4513–21. http://dx.doi.org/10.1128/aem.64.11.4513-4521.1998.
Pełny tekst źródłaThon, Susanna Mitrani, Arlene Chiu, Yida Lin, Hoon Jeong Lee, Sreyas Chintapalli i Botong Qiu. "(Keynote) New Materials and Spectroscopies for Colloidal Quantum Dot Solar Cells". ECS Meeting Abstracts MA2022-02, nr 20 (9.10.2022): 918. http://dx.doi.org/10.1149/ma2022-0220918mtgabs.
Pełny tekst źródłaLu, Haochen, Qiubo Guo, Qi Fan, Liang Xue, Xingyu Lu, Feng Zan i Hui Xia. "Cobalt sulfide quantum dot embedded in nitrogen/sulfur-doped carbon nanosheets as a polysulfide barrier in Li-S batteries". Journal of Alloys and Compounds 870 (lipiec 2021): 159341. http://dx.doi.org/10.1016/j.jallcom.2021.159341.
Pełny tekst źródłaZhang, Jianli, Yun Cheng, Haibo Chen, Yang Wang, Qiang Chen, Guangya Hou, Ming Wen i Yiping Tang. "MoP Quantum Dot-Modified N,P-Carbon Nanotubes as a Multifunctional Separator Coating for High-Performance Lithium–Sulfur Batteries". ACS Applied Materials & Interfaces 14, nr 14 (31.03.2022): 16289–99. http://dx.doi.org/10.1021/acsami.2c02212.
Pełny tekst źródłaZeng, Peng, Hao Yu, Hong Liu, Yongfang Li, Ziyi Zhou, Xi Zhou, Changmeng Guo i in. "Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin Oxide Hydroxide Catalysts". ACS Applied Energy Materials 4, nr 5 (20.04.2021): 4935–44. http://dx.doi.org/10.1021/acsaem.1c00513.
Pełny tekst źródłaLi, Ling, Xichuan Yang, Wenming Zhang, Huayan Zhang i Xiaowei Li. "Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells". Journal of Power Sources 272 (grudzień 2014): 508–12. http://dx.doi.org/10.1016/j.jpowsour.2014.08.116.
Pełny tekst źródłaLi, Wenhua, Guoqiang Long, Qianqiao Chen i Qin Zhong. "High-efficiency layered sulfur-doped reduced graphene oxide and carbon nanotube composite counter electrode for quantum dot sensitized solar cells". Journal of Power Sources 430 (sierpień 2019): 95–103. http://dx.doi.org/10.1016/j.jpowsour.2019.05.020.
Pełny tekst źródłaLiu, Yongfeng, Xiuwen Shao, Zhaoju Gao, Xiaolin Zhu, Zhangcheng Pan, Yupeng Ying, Jinpeng Yang, Wei Pei i Jia Wang. "Sulfur quantum dot as a fluorescent nanoprobe for Fe3+ ions: Uncovering of detection mechanism, high sensitivity, and large detection range". Journal of Luminescence 257 (maj 2023): 119693. http://dx.doi.org/10.1016/j.jlumin.2023.119693.
Pełny tekst źródłaNasrin, Fahmida, Kenta Tsuruga, Doddy Irawan Setyo Utomo, Ankan Dutta Chowdhury i Enoch Y. Park. "Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses". Biosensors 11, nr 10 (7.10.2021): 376. http://dx.doi.org/10.3390/bios11100376.
Pełny tekst źródłaLee, YC, MH Buraidah i HJ Woo. "Poly(acrylamide-co-acrylic acid) gel polymer electrolyte incorporating with water-soluble sodium sulfide salt for quasi-solid-state quantum dot-sensitized solar cell". High Performance Polymers 32, nr 2 (marzec 2020): 183–91. http://dx.doi.org/10.1177/0954008320902232.
Pełny tekst źródłaZheng, Guihua, Shiyao Li, Ting Zhang, Feiyun Zhu, Jing Sun, Shuangjiang Li i Linfeng You. "Water Pollution Control and Treatment Based on Quantum Dot Chemical and Biological High-Sensitivity Sensing". Journal of Sensors 2021 (28.10.2021): 1–10. http://dx.doi.org/10.1155/2021/8704363.
Pełny tekst źródła