Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Sulfoximine Directed C-H Activation.

Artykuły w czasopismach na temat „Sulfoximine Directed C-H Activation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Sulfoximine Directed C-H Activation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Li, Yang, i Lin Dong. "Rhodium-catalyzed benzoisothiazole synthesis by tandem annulation reactions of sulfoximines and activated olefins". Organic & Biomolecular Chemistry 15, nr 47 (2017): 9983–86. http://dx.doi.org/10.1039/c7ob02586f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yadav, M. Ramu, Raja K. Rit i Akhila K. Sahoo. "Sulfoximine Directed Intermolecular o-C–H Amidation of Arenes with Sulfonyl Azides". Organic Letters 15, nr 7 (11.03.2013): 1638–41. http://dx.doi.org/10.1021/ol400411v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gabriele, Bartolo. "ChemInform Abstract: Geometrically Directed C-H Activation". ChemInform 44, nr 43 (7.10.2013): no. http://dx.doi.org/10.1002/chin.201343224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yadav, M. Ramu, Raja K. Rit i Akhila K. Sahoo. "ChemInform Abstract: Sulfoximine Directed Intermolecular o-C-H Amidation of Arenes with Sulfonyl Azides." ChemInform 44, nr 31 (11.07.2013): no. http://dx.doi.org/10.1002/chin.201331076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sunnam, Sunil Kumar, i Jitendra D. Belani. "Aryne Multicomponent Reactions by Directed C−H Activation". Chemistry – A European Journal 27, nr 34 (26.05.2021): 8846–50. http://dx.doi.org/10.1002/chem.202100205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tóth, Balázs L., Anna Monory, Orsolya Egyed, Attila Domján, Attila Bényei, Bálint Szathury, Zoltán Novák i András Stirling. "The ortho effect in directed C–H activation". Chemical Science 12, nr 14 (2021): 5152–63. http://dx.doi.org/10.1039/d1sc00642h.

Pełny tekst źródła
Streszczenie:
The term and concept of Ortho Effect (OE) is introduced for the description of steric effects in transition metal catalyzed directed ortho C–H activation reactions to explain and predict reactivities of substrates.
Style APA, Harvard, Vancouver, ISO itp.
7

Sun, Qiao, i Naohiko Yoshikai. "Cobalt-catalyzed C(sp2)–H/C(sp3)–H coupling via directed C–H activation and 1,5-hydrogen atom transfer". Organic Chemistry Frontiers 5, nr 4 (2018): 582–85. http://dx.doi.org/10.1039/c7qo00906b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Yunyun, i Baoli Zhao. "Step-Economical C–H Activation Reactions Directed by In Situ Amidation". Synthesis 52, nr 21 (18.05.2020): 3211–18. http://dx.doi.org/10.1055/s-0040-1707124.

Pełny tekst źródła
Streszczenie:
Owing to the inherent ability of amides to chelate transition-metal catalysts, amide-directed C–H activation reactions constitute a major tactic in directed C–H activation reactions. While the conventional procedures for these reactions usually involve prior preparation and purification of amide substrates before the C–H activation, the step economy is actually undermined by the operation of installing the directing group (DG) and related substrate purification. In this context, directed C–H activation via in situ amidation of the crude material provides a new protocol that can significantly enhance the step economy of amide-directed C–H activation. In this short review, the advances in C–H bond activation reactions mediated or initiated by in situ amidation are summarized and analyzed.1 Introduction2 In Situ Amidation in Aryl C–H Bond Activation3 In Situ Amidation in Alkyl C–H Bond Activation4 Annulation Reactions via Amidation-Mediated C–H Activation5 Remote C–H Activation Mediated by Amidation6 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
9

Kondalarao, Koneti, Somratan Sau i Akhila K. Sahoo. "Sulfoximine Assisted C–H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines". Molecules 28, nr 13 (27.06.2023): 5014. http://dx.doi.org/10.3390/molecules28135014.

Pełny tekst źródła
Streszczenie:
In this study, we report the synthesis of unsubstituted 1,2-benzothiazines through a redox-neutral Rh(III)-catalyzed C–H activation and [4+2]-annulation of S–aryl sulfoximines with vinylene carbonate. Notably, the introduction of an N-protected amino acid ligand significantly enhances the reaction rate. The key aspect of this redox-neutral process is the utilization of vinylene carbonate as an oxidizing acetylene surrogate and an efficient vinylene transfer agent. This vinylene carbonate enables the cyclization with the sulfoximine motifs, successfully forming a diverse array of 1,2-benzothiazine derivatives in moderate to good yields. Importantly, this study highlights the potential of Rh(III)-catalyzed C–H activation and [4+2]-annulation reactions for the synthesis of optically pure 1,2-benzothiazines with high enantiomeric purity.
Style APA, Harvard, Vancouver, ISO itp.
10

Jun, C. H., i J. H. Lee. "Application of C-H and C-C bond activation in organic synthesis". Pure and Applied Chemistry 76, nr 3 (1.01.2004): 577–87. http://dx.doi.org/10.1351/pac200476030577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Li, Yan, Yun Wu, Guang‐Shui Li i Xi‐Sheng Wang. "Palladium‐Catalyzed CF Bond Formation via Directed CH Activation". Advanced Synthesis & Catalysis 356, nr 7 (5.05.2014): 1412–18. http://dx.doi.org/10.1002/adsc.201400101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Zhu, Chen, Rui Wang i John R. Falck. "Amide‐Directed Tandem CC/CN Bond Formation through CH Activation". Chemistry – An Asian Journal 7, nr 7 (11.04.2012): 1502–14. http://dx.doi.org/10.1002/asia.201200035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Jørgensen, Kåre, M. Fernández-Ibáñez i Sindhu Kancherla. "Recent Developments in Palladium-Catalysed Non-Directed C–H Bond Activation in Arenes". Synthesis 51, nr 03 (8.01.2019): 643–63. http://dx.doi.org/10.1055/s-0037-1610852.

Pełny tekst źródła
Streszczenie:
Over the past decades, organic chemists have focussed on developing new approaches to directed C–H functionalisations, where the site selectivity is steered by the presence of a directing group (DG). Nonetheless, in recent years, more and more non-directed strategies are being developed to circumvent the requisite directing group, making C–H functionalisations more generic. This short review focuses on the latest developments in palladium-catalysed non-directed C–H functionalisations of aromatic compounds.1 Introduction2 C–C Bond Formation2.1 C–H Arylation2.2 C–H Alkylation2.3 C–H Alkenylation2.4 C–H Carbonylation3 C–Heteroatom Bond Formation3.1 C–O Bond Formation3.2 C–N Bond Formation3.3 C–S Bond Formation4 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
14

Colby, Denise A., Robert G. Bergman i Jonathan A. Ellman. "Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation". Chemical Reviews 110, nr 2 (10.02.2010): 624–55. http://dx.doi.org/10.1021/cr900005n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kerr, M. E., I. Ahmed, A. Gunay, N. J. Venditto, F. Zhu, E. A. Ison i M. H. Emmert. "Non-directed, carbonate-mediated C–H activation and aerobic C–H oxygenation with Cp*Ir catalysts". Dalton Transactions 45, nr 24 (2016): 9942–47. http://dx.doi.org/10.1039/c6dt00234j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Haito, Akira, Mao Yamaguchi i Naoto Chatani. "Ru3 (CO)12 -Catalyzed Carbonylation of C−H Bonds by Triazole-Directed C−H Activation". Asian Journal of Organic Chemistry 7, nr 7 (2.05.2018): 1315–18. http://dx.doi.org/10.1002/ajoc.201800182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Liu, Yunqi, Yudong Yang, Chunxia Wang, Zhishuo Wang i Jingsong You. "Rhodium(iii)-catalyzed regioselective oxidative annulation of anilines and allylbenzenes via C(sp3)–H/C(sp2)–H bond cleavage". Chemical Communications 55, nr 8 (2019): 1068–71. http://dx.doi.org/10.1039/c8cc09099h.

Pełny tekst źródła
Streszczenie:
As a proof-of-concept, we disclose the rhodium-catalyzed oxidative annulation of anilines with allylbenzenes to afford a variety of indoles, in which the allylic C(sp3)–H activation and directed C(sp2)–H activation are merged into a single approach for the first time.
Style APA, Harvard, Vancouver, ISO itp.
18

Yadav, M. Ramu, Raja K. Rit, Majji Shankar i Akhila K. Sahoo. "Sulfoximine-Directed Ruthenium-Catalyzed ortho-C–H Alkenylation of (Hetero)Arenes: Synthesis of EP3 Receptor Antagonist Analogue". Journal of Organic Chemistry 79, nr 13 (24.06.2014): 6123–34. http://dx.doi.org/10.1021/jo5008465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Xie, Wucheng, Xu Chen, Yunyue Li, Jieling Lin, Wanwen Chen i Junjun Shi. "Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation". Chinese Journal of Organic Chemistry 42, nr 5 (2022): 1286. http://dx.doi.org/10.6023/cjoc202110028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Genov, Georgi R., James L. Douthwaite, Antti S. K. Lahdenperä, David C. Gibson i Robert J. Phipps. "Enantioselective remote C–H activation directed by a chiral cation". Science 367, nr 6483 (12.03.2020): 1246–51. http://dx.doi.org/10.1126/science.aba1120.

Pełny tekst źródła
Streszczenie:
Chiral cations have been used extensively as organocatalysts, but their application to rendering transition metal–catalyzed processes enantioselective remains rare. This is despite the success of the analogous charge-inverted strategy in which cationic metal complexes are paired with chiral anions. We report here a strategy to render a common bipyridine ligand anionic and pair its iridium complexes with a chiral cation derived from quinine. We have applied these ion-paired complexes to long-range asymmetric induction in the desymmetrization of the geminal diaryl motif, located on a carbon or phosphorus center, by enantioselective C–H borylation. In principle, numerous common classes of ligand could likewise be amenable to this approach.
Style APA, Harvard, Vancouver, ISO itp.
21

Norinder, Jakob, Arimasa Matsumoto, Naohiko Yoshikai i Eiichi Nakamura. "Iron-Catalyzed Direct Arylation through Directed C−H Bond Activation". Journal of the American Chemical Society 130, nr 18 (maj 2008): 5858–59. http://dx.doi.org/10.1021/ja800818b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Ener, Maraia E., Julia W. Darcy, Fabian S. Menges i James M. Mayer. "Base-Directed Photoredox Activation of C–H Bonds by PCET". Journal of Organic Chemistry 85, nr 11 (4.05.2020): 7175–80. http://dx.doi.org/10.1021/acs.joc.0c00333.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Thalji, Reema K., Kateri A. Ahrendt, Robert G. Bergman i Jonathan A. Ellman. "Annulation of Aromatic Imines via Directed C−H Bond Activation". Journal of Organic Chemistry 70, nr 17 (sierpień 2005): 6775–81. http://dx.doi.org/10.1021/jo050757e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Zhang, Hongyu, i Shangdong Yang. "Palladium-catalyzed R2(O)P-directed C(sp2)-H activation". Science China Chemistry 58, nr 8 (15.04.2015): 1280–85. http://dx.doi.org/10.1007/s11426-015-5382-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Gao, Mélissa, Mu‐Yi Chen, Xavier Pannecoucke, Philippe Jubault i Tatiana Besset. "Pd‐Catalyzed Directed Thiocyanation Reaction by C−H Bond Activation". Chemistry – A European Journal 26, nr 67 (3.11.2020): 15497–500. http://dx.doi.org/10.1002/chem.202003521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Huang, Yao, Wen-Jing Pan i Zhong-Xia Wang. "Rhodium-catalyzed alkenyl C–H functionalization with amides". Organic Chemistry Frontiers 6, nr 13 (2019): 2284–90. http://dx.doi.org/10.1039/c9qo00489k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Rit, Raja K., M. Ramu Yadav, Koushik Ghosh i Akhila K. Sahoo. "Reusable directing groups [8-aminoquinoline, picolinamide, sulfoximine] in C(sp3)–H bond activation: present and future". Tetrahedron 71, nr 26-27 (lipiec 2015): 4450–59. http://dx.doi.org/10.1016/j.tet.2015.03.085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sun, Qiao, i Naohiko Yoshikai. "Cobalt-Catalyzed Tandem Radical Cyclization/C–C Coupling Initiated by Directed C–H Activation". Organic Letters 21, nr 13 (20.06.2019): 5238–42. http://dx.doi.org/10.1021/acs.orglett.9b01846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Tlili, Anis, Johannes Schranck, Jola Pospech, Helfried Neumann i Matthias Beller. "Ruthenium-Catalyzed Carbonylative CC Coupling in Water by Directed CH Bond Activation". Angewandte Chemie 125, nr 24 (29.04.2013): 6413–17. http://dx.doi.org/10.1002/ange.201301663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Tlili, Anis, Johannes Schranck, Jola Pospech, Helfried Neumann i Matthias Beller. "Ruthenium-Catalyzed Carbonylative CC Coupling in Water by Directed CH Bond Activation". Angewandte Chemie International Edition 52, nr 24 (29.04.2013): 6293–97. http://dx.doi.org/10.1002/anie.201301663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Zhu, Chen, Rui Wang i John R. Falck. "ChemInform Abstract: Amide-Directed Tandem C-C/C-N Bond Formation Through C-H Activation." ChemInform 43, nr 41 (13.09.2012): no. http://dx.doi.org/10.1002/chin.201241232.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Korwar, Sudha, Michael Burkholder, Stanley E. Gilliland, Kendra Brinkley, B. Frank Gupton i Keith C. Ellis. "Chelation-directed C–H activation/C–C bond forming reactions catalyzed by Pd(ii) nanoparticles supported on multiwalled carbon nanotubes". Chemical Communications 53, nr 52 (2017): 7022–25. http://dx.doi.org/10.1039/c7cc02122d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Li, Shuai-Shuai, Chen-Fei Liu, Ying-Qi Xia, Wei-Huan Li, Guo-Tai Zhang, Xiao-Mei Zhang i Lin Dong. "A unique annulation of 7-azaindoles with alkenyl esters to produce π-conjugated 7-azaindole derivatives". Organic & Biomolecular Chemistry 14, nr 23 (2016): 5214–18. http://dx.doi.org/10.1039/c6ob00730a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Li, Yan, Yun Wu, Guang-Shui Li i Xi-Sheng Wang. "ChemInform Abstract: Palladium-Catalyzed C-F Bond Formation via Directed C-H Activation". ChemInform 45, nr 28 (26.06.2014): no. http://dx.doi.org/10.1002/chin.201428250.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Chen, Bin, Yan Jiang, Jiang Cheng i Jin-Tao Yu. "Rhodium-catalyzed hydroarylation of alkynes via tetrazole-directed C–H activation". Organic & Biomolecular Chemistry 13, nr 10 (2015): 2901–4. http://dx.doi.org/10.1039/c5ob00064e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Jang, Min-Jung, i So-Won Youn. "Pd-Catalyzed ortho-Methylation of Acetanilides via Directed C-H Activation". Bulletin of the Korean Chemical Society 32, spc8 (20.08.2011): 2865–66. http://dx.doi.org/10.5012/bkcs.2011.32.8.2865.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Simmons, Eric M., i John F. Hartwig. "Iridium-Catalyzed AreneOrtho-Silylation by Formal Hydroxyl-Directed C−H Activation". Journal of the American Chemical Society 132, nr 48 (8.12.2010): 17092–95. http://dx.doi.org/10.1021/ja1086547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Sirois, John J., Riley Davis i Brenton DeBoef. "Iron-Catalyzed Arylation of Heterocycles via Directed C–H Bond Activation". Organic Letters 16, nr 3 (22.01.2014): 868–71. http://dx.doi.org/10.1021/ol403634b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Hanchate, Vinayak, Ravi Devarajappa i Kandikere Ramaiah Prabhu. "Sulfoxonium-Ylide-Directed C–H Activation and Tandem (4 + 1) Annulation". Organic Letters 22, nr 8 (31.03.2020): 2878–82. http://dx.doi.org/10.1021/acs.orglett.0c00451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Hartwig, J., i E. Simmons. "Iridium-Catalyzedortho-Silylation of Arenes by Hydroxyl-Directed C-H Activation". Synfacts 2011, nr 02 (19.01.2011): 0205. http://dx.doi.org/10.1055/s-0030-1259244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Harada, Hitoshi, Reema K. Thalji, Robert G. Bergman i Jonathan A. Ellman. "Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C−H Bond Activation". Journal of Organic Chemistry 73, nr 17 (wrzesień 2008): 6772–79. http://dx.doi.org/10.1021/jo801098z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Pham, Manh V., Baihua Ye i Nicolai Cramer. "Access to Sultams by Rhodium(III)-Catalyzed Directed CH Activation". Angewandte Chemie 124, nr 42 (23.09.2012): 10762–66. http://dx.doi.org/10.1002/ange.201206191.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Pham, Manh V., Baihua Ye i Nicolai Cramer. "Access to Sultams by Rhodium(III)-Catalyzed Directed CH Activation". Angewandte Chemie International Edition 51, nr 42 (23.09.2012): 10610–14. http://dx.doi.org/10.1002/anie.201206191.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Henry, Martyn, Mohamed Mostafa i Andrew Sutherland. "Recent Advances in Transition-Metal-Catalyzed, Directed Aryl C–H/N–H Cross-Coupling Reactions". Synthesis 49, nr 20 (28.08.2017): 4586–98. http://dx.doi.org/10.1055/s-0036-1588536.

Pełny tekst źródła
Streszczenie:
Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.1 Introduction2 Intramolecular C–N Cross-Dehydrogenative Coupling2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation3 Intermolecular C–N Cross-Dehydrogenative Coupling3.1 ortho-C–N Bond Formation3.1.1 Copper-Catalyzed Reactions3.1.2 Other Transition-Metal-Catalyzed Reactions3.2 meta- and para-C–N Bond Formation4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds5 Conclusions
Style APA, Harvard, Vancouver, ISO itp.
45

Uttry, Alexander, i Manuel van Gemmeren. "Direct C(sp3)–H Activation of Carboxylic Acids". Synthesis 52, nr 04 (17.10.2019): 479–88. http://dx.doi.org/10.1055/s-0039-1690720.

Pełny tekst źródła
Streszczenie:
Carboxylic acids are important in a variety of research fields and applications. As a result, substantial efforts have been directed towards the C–H functionalization of such compounds. While the use of the carboxylic acid moiety as a native directing group for C(sp2)–H functionalization reactions is well established, as yet there is no general solution for the C(sp3)–H activation of aliphatic carboxylic acids and most endeavors have instead relied on the introduction of stronger directing groups. Recently however, novel ligands, tools, and strategies have emerged, which enable the use of free aliphatic carboxylic acids in C–H-activation-based transformations.1 Introduction2 Challenges in the C(sp3)–H Bond Activation of Carboxylic Acids3 The Lactonization of Aliphatic Carboxylic Acids4 The Directing Group Approach5 The Direct C–H Arylation of Aliphatic Carboxylic Acids6 The Direct C–H Olefination of Aliphatic Carboxylic Acids7 The Direct C–H Acetoxylation of Aliphatic Carboxylic Acids8 Summary
Style APA, Harvard, Vancouver, ISO itp.
46

Zhou, Chun-Ni, Zi-Ang Zheng, George Chang, Yuan-Chao Xiao, Yang-Huan Shen, Gen Li, Yu-Min Zhang, Wang-Ming Peng, Liang Wang i Biao Xiao. "Phosphorus-Containing Groups Assisted Transition Metal Catalyzed C-H Activation Reactions". Current Organic Chemistry 23, nr 2 (23.04.2019): 103–35. http://dx.doi.org/10.2174/1385272823666190213113059.

Pełny tekst źródła
Streszczenie:
Over the last few decades, transition metal-catalyzed direct C-H activation with the assistance of a coordinating directing group has emerged as an atom- and stepeconomical synthetic tools to transform C–H bonds into carbon-carbon or carbonheteroatom bonds. Although the strategies involving regioselective C–H cleavage assisted by various directing groups have been extensively reviewed in the literature, we now attempt to give an overview of the recent advances on phosphorus-containing functional group assisted C-H activation reactions catalyzed by transition-metal catalysts including mechanistic study and synthetic applications. The discussion is directed towards C-H olefination, C-H activation/cyclization, C-H arylation, C-H amination, C-H hydroxylation and acetoxylation as well as miscellaneous C-H activation.
Style APA, Harvard, Vancouver, ISO itp.
47

Wan, Jung-Chih, Jun-Min Huang, Yu-Huei Jhan i Jen-Chieh Hsieh. "Novel Syntheses of Fluorenones via Nitrile-Directed Palladium-Catalyzed C–H and Dual C–H Bond Activation". Organic Letters 15, nr 11 (14.05.2013): 2742–45. http://dx.doi.org/10.1021/ol401063w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Jiang, Heming, i Tian-Yu Sun. "The Activating Effect of Strong Acid for Pd-Catalyzed Directed C–H Activation by Concerted Metalation-Deprotonation Mechanism". Molecules 26, nr 13 (4.07.2021): 4083. http://dx.doi.org/10.3390/molecules26134083.

Pełny tekst źródła
Streszczenie:
A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.
Style APA, Harvard, Vancouver, ISO itp.
49

Yadav, M. Ramu, Raja K. Rit, Majji Shankar i Akhila K. Sahoo. "ChemInform Abstract: Sulfoximine-Directed Ruthenium-Catalyzed ortho-C-H Alkenylation of (Hetero)Arenes: Synthesis of EP3 Receptor Antagonist Analogue." ChemInform 45, nr 52 (11.12.2014): no. http://dx.doi.org/10.1002/chin.201452042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Xiao, Bin, Tian-Jun Gong, Zhao-Jing Liu, Jing-Hui Liu, Dong-Fen Luo, Jun Xu i Lei Liu. "Synthesis of Dibenzofurans via Palladium-Catalyzed Phenol-Directed C–H Activation/C–O Cyclization". Journal of the American Chemical Society 133, nr 24 (22.06.2011): 9250–53. http://dx.doi.org/10.1021/ja203335u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii