Gotowa bibliografia na temat „Sugarcane mosaic virus Genetics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sugarcane mosaic virus Genetics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Sugarcane mosaic virus Genetics"

1

Lu, Guilong, Zhoutao Wang, Fu Xu, Yong-Bao Pan, Michael P. Grisham i Liping Xu. "Sugarcane Mosaic Disease: Characteristics, Identification and Control". Microorganisms 9, nr 9 (17.09.2021): 1984. http://dx.doi.org/10.3390/microorganisms9091984.

Pełny tekst źródła
Streszczenie:
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.
Style APA, Harvard, Vancouver, ISO itp.
2

Viswanathan, R., M. Balamuralikrishnan i R. Karuppaiah. "Characterization and genetic diversity of sugarcane streak mosaic virus causing mosaic in sugarcane". Virus Genes 36, nr 3 (czerwiec 2008): 553–64. http://dx.doi.org/10.1007/s11262-008-0228-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Grisham, M. P., i Y. B. Pan. "A Genetic Shift in the Virus Strains that Cause Mosaic in Louisiana Sugarcane". Plant Disease 91, nr 4 (kwiecień 2007): 453–58. http://dx.doi.org/10.1094/pdis-91-4-0453.

Pełny tekst źródła
Streszczenie:
Leaf samples from 693 sugarcane plants showing mosaic symptoms were collected in 2001, 2002, and 2003 at 12 locations within the Louisiana sugarcane industry. Virus isolates associated with the diseased plants were identified using reverse-transcriptase polymerase chain reaction (RT-PCR) to distinguish between Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV). No SCMV strain was associated with any diseased plant collected during the survey. RT-PCR-based restriction fragment length polymorphism (RFLP) analysis showed that SrMV strains I, H, and M were associated with 67, 10, and 2% of the plants with mosaic symptoms, respectively. In previous surveys conducted between 1978 and 1995, over 90% of the plants sampled were infected with SrMV strain H. The remaining plants mostly were infected with SrMV strain I, except for an occasional sample with SrMV strain M. RT-PCR showed that approximately 13% of the samples collected between 2001 and 2003 were infected with SrMV, but the RFLP banding pattern did not match any described strain. Twelve plants were co-infected by two SrMV strains and two plants by three SrMV strains. No RT-PCR product was produced by either the SCMV- or the SrMV-specific RT-PCR primer set for 8% of the plants showing mosaic symptoms, suggesting that another virus may cause sugarcane mosaic in Louisiana.
Style APA, Harvard, Vancouver, ISO itp.
4

XU, Dong-Lin. "Genetic Diversity of Sorghum Mosaic Virus Infecting Sugarcane". ACTA AGRONOMICA SINICA 34, nr 11 (2.02.2009): 1916–20. http://dx.doi.org/10.3724/sp.j.1006.2008.01916.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Perera, M. F., M. P. Filippone, C. J. Ramallo, M. I. Cuenya, M. L. García, L. D. Ploper i A. P. Castagnaro. "Genetic Diversity Among Viruses Associated with Sugarcane Mosaic Disease in Tucumán, Argentina". Phytopathology® 99, nr 1 (styczeń 2009): 38–49. http://dx.doi.org/10.1094/phyto-99-1-0038.

Pełny tekst źródła
Streszczenie:
Sugarcane leaves with mosaic symptoms were collected in 2006–07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to geographical origin, and sequence analyses of CP genes showed a greater genetic diversity compared with other studies. SrMV was detected in 63.2% of samples and most of these were also infected by SCMV, indicating that, unlike other countries and other Argentinean provinces, where high levels of co-infection are infrequent, co-existence is common in Tucumán. RFLP analysis showed the presence of SrMV strains M (68%) and I (14%), while co-infection between M and H strains was present in 18% of samples. Other SCMV subgroup members and the Sugarcane streak mosaic virus (SCSMV) were not detected. Our results also showed that sequencing is currently the only reliable method to assess SCMV and SrMV genetic diversity, because RT-PCR-RFLP may not be sufficiently discriminating.
Style APA, Harvard, Vancouver, ISO itp.
6

Wang, Jian-Guang, Hong-Ying Zheng, Hai-Ru Chen, Michael J. Adams i Jian-Ping Chen. "Molecular Diversities of Sugarcane mosaic virus and Sorghum mosaic virus Isolates from Yunnan Province, China". Journal of Phytopathology 158, nr 6 (2.11.2009): 427–32. http://dx.doi.org/10.1111/j.1439-0434.2009.01642.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Li, Yongqiang, Ruiying Liu, Tao Zhou i Zaifeng Fan. "Genetic diversity and population structure of Sugarcane mosaic virus". Virus Research 171, nr 1 (styczeń 2013): 242–46. http://dx.doi.org/10.1016/j.virusres.2012.10.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Padhi, Abinash, i Karri Ramu. "Genomic evidence of intraspecific recombination in sugarcane mosaic virus". Virus Genes 42, nr 2 (31.12.2010): 282–85. http://dx.doi.org/10.1007/s11262-010-0564-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dong, Meng, Guangyuan Cheng, Lei Peng, Qian Xu, Yongqing Yang i Jingsheng Xu. "Transcriptome Analysis of Sugarcane Response to the Infection by Sugarcane Steak Mosaic Virus (SCSMV)". Tropical Plant Biology 10, nr 1 (15.12.2016): 45–55. http://dx.doi.org/10.1007/s12042-016-9183-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Li, Li, Xifeng Wang i Guanghe Zhou. "Analyses of maize embryo invasion by Sugarcane mosaic virus". Plant Science 172, nr 1 (styczeń 2007): 131–38. http://dx.doi.org/10.1016/j.plantsci.2006.08.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Sugarcane mosaic virus Genetics"

1

Silva, Marcel Fernando da [UNESP]. "Resistência de genótipos de cana-de-açúcar ao Sugarcane mosaic virus (SCMV)". Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/110323.

Pełny tekst źródła
Streszczenie:
Made available in DSpace on 2014-11-10T11:09:37Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-07Bitstream added on 2014-11-10T11:58:12Z : No. of bitstreams: 1 000794428.pdf: 1220706 bytes, checksum: 891f167415410a39eb3a90bc37f91033 (MD5)
A resistência a doenças constitui o principal fator de substituição de cultivares na cana-de-açúcar, sendo o mosaico uma das principais doenças da cultura, com registros em quase todos os países produtores. O presente estudo teve como objetivo avaliar a resistência de 79 genótipos de cana-de-açúcar, incluindo variedades e clones elite, inoculados artificialmente com o Sugarcane mosaic virus (SCMV) Rib-1 e estimar os parâmetros genéticos associados à resistência por meio de análise de variância. Avaliações de sintomas por escala de notas foram feitas em associação com o teste serológico Plate Trapped Antibody-ELISA em um experimento conduzido em estufa e levado em condições de campo. Os genótipos IACSP982053, IACSP972028, RB855156, IACSP993009, IACSP977543, IACSP972000, IACSP962100, IACSP986202, IAC912195, IACSP953028, IAC862480, IACSP972098, IACSP955000, SP701143, IACSP952078, IACSP972020, IACSP967569, IACSP985046, SP803280, IACSP993085, IACSP972055 e IACSP977065 apresentaram-se resistentes à estirpe em estudo. A herdabilidade no sentido amplo calculada foi de 19,37% ao nível de plantas individuais e de aproximadamente 62,18% ao nível de média de parcelas, indicando uma alta influência das condições ambientais na manifestação dos sintomas de mosaico. Acessos de cana-de-açúcar pertencentes à Coleção de Germoplasma do Centro de Cana do Instituto Agronômico de Campinas também foram avaliados em um segundo experimento, com o objetivo de identificar possíveis fontes de resistência ao SCMV para serem utilizadas nos programas de introgressão genética. Foi realizada uma avaliação de sintomas de mosaico por meio de escala de notas em associação com o teste serológico PTA-ELISA em 43 acessos, ao todo, incluindo as espécies Saccharum officinarum, S. barberi, S.spontaneum e S.robustum, mantidos em campo em condições de infecção natural. Os clones ...
The resistance to diseases constitutes the main factor of cultivar replacement in sugarcane, being mosaic one of the main diseases of this crop, with records in almost all the major sugarcane growing countries. This study aimed to evaluate the resistance of 79 sugarcane genotypes, including varieties and elite clones, artificially inoculated with Sugarcane mosaic virus (SCMV) R1b-1 and estimate genetic parameters associated to mosaic resistance by variance analysis. Evaluations of symptoms by grade scale associated with serological test Plate Trapped Antibody-ELISA were performed in a greenhouse experiment that was later taken to field conditions. The genotypes IACSP982053, IACSP972028, RB855156, IACSP993009, IACSP977543, IACSP972000, IACSP962100, IACSP986202, IAC912195, IACSP953028, IAC862480, IACSP972098, IACSP955000, SP701143, IACSP952078, IACSP972020, IACSP967569, IACSP985046, SP803280, IACSP993085, IACSP972055 and IACSP977065 were resistant to the strain in study. The broad-sense heritability at individual level and means based was 19.37% and 62.18%, respectively, which shows a great influence of environmental conditions on the expression of mosaic symptoms. Wild sugarcane germplasm were also evaluated for SCMV resistance in a second experiment, in order to identify new sources of mosaic resistance for future introgression crosses. An evaluation of symptoms by grade scale associated with serological test Plate Trapped Antibody-ELISA were performed for 43 clones, including Saccharum officinarum, S. barberi, S. spontaneum and S. robustum species, maintained under natural infection conditions. The clones IS76-155, IJ76-418 red, NG57-50, Ceram red, Badila, Sac.off. 8276, Fiji19 IJ76-313, US 57-141-5, Krakatau, IN8458, IN84-88, IN84-82, Gandacheni and Chin possibly represents resistant sources. A differential behavior among Saccharum species were also observed, with higher susceptibility in ...
Style APA, Harvard, Vancouver, ISO itp.
2

Quint, Marcel. "Resistance gene analogues as a tool for basic and applied resistance genetics exemplified by sugarcane mosaic virus resistance in maize (Zea mays L.)". [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11051858.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Thomas, C. M. "Cauliflower mosaic virus DNA replication". Thesis, Bucks New University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Thompson, Nicole. "Sugarcane striate mosaic associated virus : RNA sequence and genome organisation, taxonomy and detection /". Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pht4744.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Turner, David Richard. "Protein-RNA interactions in tobacco mosaic virus assembly". Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328799.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cartwirght, Ewen James. "Barley mild mosaic virus : deletions, duplication and transmission". Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Silva, Marcel Fernando da. "Resistência de genótipos de cana-de-açúcar ao Sugarcane mosaic virus (SCMV) /". Jaboticabal, 2014. http://hdl.handle.net/11449/110323.

Pełny tekst źródła
Streszczenie:
Orientador: Luciana Rossini Pinto
Coorientador: Marcos Cesar Gonçalves
Banca: Sandra Helena Unêda Trevisoli
Banca: Mauro Alexandre Xavier
Resumo: A resistência a doenças constitui o principal fator de substituição de cultivares na cana-de-açúcar, sendo o mosaico uma das principais doenças da cultura, com registros em quase todos os países produtores. O presente estudo teve como objetivo avaliar a resistência de 79 genótipos de cana-de-açúcar, incluindo variedades e clones elite, inoculados artificialmente com o Sugarcane mosaic virus (SCMV) Rib-1 e estimar os parâmetros genéticos associados à resistência por meio de análise de variância. Avaliações de sintomas por escala de notas foram feitas em associação com o teste serológico Plate Trapped Antibody-ELISA em um experimento conduzido em estufa e levado em condições de campo. Os genótipos IACSP982053, IACSP972028, RB855156, IACSP993009, IACSP977543, IACSP972000, IACSP962100, IACSP986202, IAC912195, IACSP953028, IAC862480, IACSP972098, IACSP955000, SP701143, IACSP952078, IACSP972020, IACSP967569, IACSP985046, SP803280, IACSP993085, IACSP972055 e IACSP977065 apresentaram-se resistentes à estirpe em estudo. A herdabilidade no sentido amplo calculada foi de 19,37% ao nível de plantas individuais e de aproximadamente 62,18% ao nível de média de parcelas, indicando uma alta influência das condições ambientais na manifestação dos sintomas de mosaico. Acessos de cana-de-açúcar pertencentes à Coleção de Germoplasma do Centro de Cana do Instituto Agronômico de Campinas também foram avaliados em um segundo experimento, com o objetivo de identificar possíveis fontes de resistência ao SCMV para serem utilizadas nos programas de introgressão genética. Foi realizada uma avaliação de sintomas de mosaico por meio de escala de notas em associação com o teste serológico PTA-ELISA em 43 acessos, ao todo, incluindo as espécies Saccharum officinarum, S. barberi, S.spontaneum e S.robustum, mantidos em campo em condições de infecção natural. Os clones ...
Abstract: The resistance to diseases constitutes the main factor of cultivar replacement in sugarcane, being mosaic one of the main diseases of this crop, with records in almost all the major sugarcane growing countries. This study aimed to evaluate the resistance of 79 sugarcane genotypes, including varieties and elite clones, artificially inoculated with Sugarcane mosaic virus (SCMV) R1b-1 and estimate genetic parameters associated to mosaic resistance by variance analysis. Evaluations of symptoms by grade scale associated with serological test Plate Trapped Antibody-ELISA were performed in a greenhouse experiment that was later taken to field conditions. The genotypes IACSP982053, IACSP972028, RB855156, IACSP993009, IACSP977543, IACSP972000, IACSP962100, IACSP986202, IAC912195, IACSP953028, IAC862480, IACSP972098, IACSP955000, SP701143, IACSP952078, IACSP972020, IACSP967569, IACSP985046, SP803280, IACSP993085, IACSP972055 and IACSP977065 were resistant to the strain in study. The broad-sense heritability at individual level and means based was 19.37% and 62.18%, respectively, which shows a great influence of environmental conditions on the expression of mosaic symptoms. Wild sugarcane germplasm were also evaluated for SCMV resistance in a second experiment, in order to identify new sources of mosaic resistance for future introgression crosses. An evaluation of symptoms by grade scale associated with serological test Plate Trapped Antibody-ELISA were performed for 43 clones, including Saccharum officinarum, S. barberi, S. spontaneum and S. robustum species, maintained under natural infection conditions. The clones IS76-155, IJ76-418 red, NG57-50, Ceram red, Badila, Sac.off. 8276, Fiji19 IJ76-313, US 57-141-5, Krakatau, IN8458, IN84-88, IN84-82, Gandacheni and Chin possibly represents resistant sources. A differential behavior among Saccharum species were also observed, with higher susceptibility in ...
Mestre
Style APA, Harvard, Vancouver, ISO itp.
8

Chen, Pengyin. "Genetics of reactions to soybean mosaic virus in soybean". Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54781.

Pełny tekst źródła
Streszczenie:
The genetic interactions among 9 soybean [Glycine max (L.) Merr.] cultivars and 6 strains of soybean mosaic virus (SMV) were investigated. The objectives were to identify genes and/or alleles conditioning resistant and necrotic reactions to SMV and to determine the genetic relationships among resistance genes from cultivars exhibiting differential responses to the SMV strains. Seven SMV-resistant (R) cultivars (‘PI 486355’, ‘Suweon 97’, ‘PI 96983’, ‘Ogden’, ‘York’, ‘Marshall’, and ‘Kwanggyo’) were crossed in all combinations among each other and with susceptible (S) cultivars ‘Essex’ and ‘Lee 68’. F₂ populations and F₂-derived F₃ lines were inoculated in field with the SMV type strain Gl and in the greenhouse with the virulent strains G4, G5, G6, G7, and G7A. All F₂ populations from R x S and necrotic (N) x S crosses having PI 96983, Ogden, York, Marshall, and Kwanggyo as either resistant or necrotic parents segregated 3R:1S and 3N:1S, respectively. F₂-derived F₃ progenies from R x S crosses exhibited an F₂ genotypic ratio of 1 homogeneous R : 2 segregating (3R:1S) : l homogeneous S. The results indicate that each of these five resistant parents has a single, dominant or partially dominant gene conditioning the resistant and necrotic reactions to SMV. No segregation for SMV reaction was evident in F₂ and F₃ generations from R x R, N x N, and S x S crosses among the five differential cultivars, indicating that the resistance genes in the five cultivars are alleles at a common locus. The alleles in PI 96983 and Ogden were previously labeled Rsy and rsyt, respectively. Gene symbols, Rsyy, Rsym, and Rsyk are proposed for the resistance genes in York, Marshall, and Kwanggyo, respectively. It is also proposed that the gene symbol rsyt be changed to Rsyt to more accurately reflect its genetic relationship to the susceptible allele. The R x S crosses with PI 486355 and Suweon 97 as resistant parents segregated 15R:1S in the F₂ and 7 (all R) : 4 (3R:1S) : 4 (15R:1S) : 1 (all S) in the F₃, indicating that each has two independent genes for resistance to SMV. The F₂ plants of PI 486355 x Suweon 97 showed no segregation for SMV reaction, suggesting that they have at least one gene in common. The crosses among all 7 resistant parents produced no susceptible segregates when inoculated with strain G1. It is concluded that the 7 resistant cultivars each have a gene or allele at the Rsy locus. Data from the experiments furnished conclusive evidence that the necrotic reaction in segregating populations is highly associated with plants that are heterozygous for the resistance gene.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
9

Qusus, Saba J. "Molecular Studies on Soybean Mosaic Virus-Soybean Interations". Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30328.

Pełny tekst źródła
Streszczenie:
In the U.S., soybean mosaic virus (SMV) is classified into seven strain groups, designated G1 to G7, based on their different responses on resistant soybean [Glycine max (L.) Merr.] cultivars. These responses are: symptomless or resistant (R), necrotic (N), and mosaic or susceptible (S). The gene-for-gene model has been proposed for SMV-soybean interactions. In the majority of cultivars, a single dominant gene, Rsv1, confers both the R and N responses. In the first part of this study, the coat protein (CP) genes of two SMV strains, G1 and G6 were isolated, cloned, and sequenced. Gene isolation was done by reverse transcription-polymerase chain reaction (RT-PCR) on partially purified virus preparation without prior RNA extraction. Amplified products were blunt-end ligated into pNoTA/T7 vector and transformed into competent cells. Sequencing was performed in both directions on heat-denatured double-stranded plasmids. The predicted 265 amino acid sequence of the CP of G1 and G6 strains were 98.9% identical, with only two amino acid differences. Correlating the CP sequences of G1, G2, G6, and G7, with their virulence on resistant soybean cultivars indicated that the CP is not likely to be the R- and/or N-determinant in the SMV-soybean system. The second part of the study involved studying the pathogenesis of G1, G6, and G7 strains on inoculated leaves of R, N, and S soybean cultivars by leaf imprint immunoassay. Results indicated four types of reactions: i) susceptible, showing unrestricted replication and spread; ii) immune, where no virus was detected; iii) systemic spread, showing unrestricted replication but limited spread along the veins; and iv) restricted replication and spread, where infection was restricted to few foci along the veins. Results of this study indicated that Rsv1-mediated resistance is a multicomponent type of resistance that involves both inhibition of virus replication as well as cell-to-cell movement. The third part of the study aimed at investigating Rsv1-mediated resistance at the cellular level. For this purpose, an SMV-soybean protoplast system was developed. Protoplast isolation was based on a combined cellulase-pectolyase Y-23 digestion and metrizamide-sorbitol gradient purification protocol. Virus inoculation of protoplasts was facilitated by either polyethelene glycol (PEG) or poly-L-ornithine (PLO), and method of detection was by Western blotting using antiserum to whole virus. Inoculation by PEG was successful, but results were irreproducible because of the adverse effect of PEG on protoplast viability. Inoculation by PLO was inconclusive because of the high background from residual inoculum. Additional research is needed before a protoplast system can be used to study the mechanism of Rsv1 resistance to SMV at the cellular level.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
10

Holness, Claire Louise Lesley. "Isolation and characterisation of mutants of cowpea mosaic virus". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/59381/.

Pełny tekst źródła
Streszczenie:
A nitrous acid-induced, temperature sensitive mutant of cowpea mosaic virus (CPMV) known as 8-14, (Evans 1985, Virology 1985, 141, 275-282), was characterised. The phenotypic defect in 8 -14 was shown not to affect translation of the RNA or the first proteolytic cleavage of the B RNA-encoded polyprotein. The defect is probably at the level of genome replication. The technique of two dimensional RNA fingerprinting showed the mutant genome to be similar to the parental wild-type but did not resolve the genetic alteration(s) specific for the mutation. The mechanism of CPMV translation was investigated by site-directed mutagenesis of a full-length cDNA clone of CPMV M RNA from which infectious RNA could be generated by in vitro transcription. The results obtained confirm the AUG at position 161 is used to direct the synthesis of the 105K protein in vitro. The detection of a 58K protein in infected protoplasts suggests that it is also used in vivo. The synthesis of the 95K protein can be initiated from either of the AUGs at positions 512 and 524. Synthesis of this protein is not essential for CPMV replication in protoplasts. Several deletion mutations were created in the M RNA cDNA clone in order to determine the regions of M RNA essential for replication of M RNA. Analysis of one mutant indicated that sequences between 1446 and 1620 are probably not required for replicase recognition. However, the accumulation of this mutant in protoplasts was reduced, presumably as a result of lack of encapsidation of the RNA as this mutant is thought not to synthesise functional coat protein. Data from several mutants showed that alterations of M RNA around nucleotides 161 and 189 prevent transcript accumulation in protoplasts possibly owing to a severe reduction in replicability of the input RNA.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Sugarcane mosaic virus Genetics"

1

Weiland, John J. The roles of turnip yellow mosaic virus genes in virus replication. 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tsai, Ching-Hsiu. Characterization of the role of the 3' noncoding region of turnip yellow mosaic virus RNA. 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wallace, S. Ellen. Search for protein-protein interactions underlying the cis-preferential replication of turnip yellow mosaic virus. 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wallace, S. Ellen. Search for protein-protein interactions underlying the cis-preferential replication of turnip yellow mosaic virus. 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bransom, Kathryn L. Gene expression of proteins involved in replication of turnip yellow mosaic virus. 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Sugarcane mosaic virus Genetics"

1

Baker, Barbara, S. P. Dinesh-Kumar, Doil Choi, Reinhard Hehl, Catherine Corr i Steve Whitham. "Isolation of the Tobacco Mosaic Virus Resistance Gene N". W Advances in Molecular Genetics of Plant-Microbe Interactions, 297–302. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_43.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lesemann, D. E., D. D. Shukla, M. Tosic i W. Huth. "Differentiation of the four viruses of the sugarcane mosaic virus subgroup based on cytopathology". W Potyvirus Taxonomy, 353–61. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-6920-9_38.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bisaro, David M., Garry Sunter, Gwen N. Revington, Clare L. Brough, Sheriar G. Hormuzdi i Marcos Hartitz. "Molecular Genetics of Tomato Golden Mosaic Virus Replication: Progress Toward Defining Gene Functions, Transcription Units and the Origin of DNA Replication". W Viral Genes and Plant Pathogenesis, 89–105. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3424-1_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

"Tobacco Mosaic Virus". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1979. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_17072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

"Cauliflower Mosaic Virus". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 283. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_2436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

"Cowpea Mosaic Virus". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 433. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_3734.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

"Alfalfa Mosaic Virus". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 56. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_469.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bonneville, J. M., T. Hohn i P. Pfeiffer. "Reverse Transcription in the Plant Virus, Cauliflower Mosaic Virus". W RNA Genetics, 23–42. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076432-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

"TMV (tobacco mosaic virus)". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1973. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_17055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dreher, T. W., i T. C. Hall. "RNA Replication of Brome Mosaic Virus and Related Viruses". W RNA Genetics, 91–113. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076425-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Sugarcane mosaic virus Genetics"

1

Chandra, Mukesh, Pallavi Somvanshi, B. N. Mishra i Amod Tiwari. "Genetics of Yellow Mosaic Virus Resistance in Mung bean". W 2010 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2010. http://dx.doi.org/10.1109/iccic.2010.5705760.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

"Reactivation of VaSTS1 expression in transgenic Arabidopsis thaliana plants by retransformation with 2b from Cucumber mosaic virus, isolate NK". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

"Reactivation of VaSTS1 expression in Arabidopsis thaliana transgenic plants by retransformation with 2b from the Cucumber Mosaic Virus isolate NK". W Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-45.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kaliuzhna, Maryna, Halyna Snihur, Alla Kharina, Vasyl Chumak i Iryna Budzanivska. "<em></em><em>Rhopalosiphum padi </em>as a Possible Virus Vector of <em>Sugarcane mosaic virus</em> in <em>Zea mays</em> in Ukraine: The First Report". W The 1st International Electronic Conference on Entomology. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iece-10642.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Sugarcane mosaic virus Genetics"

1

Gera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng i A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, styczeń 2001. http://dx.doi.org/10.32747/2001.7575293.bard.

Pełny tekst źródła
Streszczenie:
Objectives. The major aim of the proposed research was to establish an efficient and reproducible genetic transformation system for Easter lily and gladiolus using either biolistics or Agrobacterium. Transgenic plants containing pathogen-derived genes for virus resistance were to be developed and then tested for virus resistance. The proposal was originally aimed at studying cucumber mosaic virus (CMV) resistance in plants, but studies later included bean yellow mosaic virus (BYMV). Monoclonal antibodies were to be tested to determine their effectiveness in interning with virus infection and vector (aphid) transmission. Those antibodies that effectively interfered with virus infection and transmission were to be cloned as single chain fragments and used for developing transgenic plants with the potential to resist virus infection. Background to the topic. Many flower crops, as lily and gladiolus are propagated vegetatively through bulbs and corms, resulting in virus transmission to the next planting generation. Molecular genetics offers the opportunity of conferring transgene-mediated disease resistance to flower crops that cannot be achieved through classical breeding. CMV infects numerous plant species worldwide including both lilies and gladioli. Major conclusions, solutions and achievements. Results from these for future development of collaborative studies have demonstrated the potential transgenic floral bulb crops for virus resistance. In Israel, an efficient and reproducible genetic transformation system for Easter lily using biolistics was developed. Transient as well as solid expression of GUS reporter gene was demonstrated. Putative transgenic lily plantlets containing the disabled CMV replicase transgene have been developed. The in vitro ability of monoclonal antibodies (mAbs) against CMV to neutralize virus infectivity and block virus transmission by M. persicae were demonstrated. In the US, transgenic Gladiolus plants containing either the BYMV coat protein or antisense coat protein genes have been developed and some lines were found to be virus resistant. Long-term expression of the GUS reporter gene demonstrated that transgene silencing did not occur after three seasons of dormancy in the 28 transgenic Gladiolus plants tested. Selected monoclonal antibody lines have been isolated, cloned as single chain fragments and are being used in developing transgenic plants with CMV resistance. Ornamental crops are multi-million dollar industries in both Israel and the US. The increasing economic value of these floral crops and the increasing ban numerous pesticides makes it more important than ever that alternatives to chemical control of pathogens be studied to determine their possible role in the future. The cooperation resulted in the objectives being promoted at national and international meetings. The cooperation also enabled the technology transfer between the two labs, as well as access to instrumentation and specialization particular to the two labs.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii