Artykuły w czasopismach na temat „Subcubic graph”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Subcubic graph.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Subcubic graph”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

SKULRATTANAKULCHAI, SAN, i HAROLD N. GABOW. "COLORING ALGORITHMS ON SUBCUBIC GRAPHS". International Journal of Foundations of Computer Science 15, nr 01 (luty 2004): 21–40. http://dx.doi.org/10.1142/s0129054104002285.

Pełny tekst źródła
Streszczenie:
We present efficient algorithms for three coloring problems on subcubic graphs. (A subcubic graph has maximum degree at most three.) The first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring. Our algorithm runs in linear time, and appears to be simpler than previous ones. The second algorithm is the first randomized EREW PRAM algorithm for the same problem. It uses O(n/ log n) processors and runs in O( log n) time with high probability, where n is the number of vertices of the graph. The third algorithm is the first linear-time algorithm to 5-total-color subcubic graphs. The fourth algorithm generalizes this to get the first linear-time algorithm to 5-list-total-color subcubic graphs. Our sequential algorithms are based on a method of ordering the vertices and edges by traversing a spanning tree of a graph in a bottom-up fashion. Our parallel algorithm is based on a simple decomposition principle for subcubic graphs.
Style APA, Harvard, Vancouver, ISO itp.
2

Hou, Yaoping, i Dijian Wang. "Laplacian integral subcubic signed graphs". Electronic Journal of Linear Algebra 37 (26.02.2021): 163–76. http://dx.doi.org/10.13001/ela.2021.5699.

Pełny tekst źródła
Streszczenie:
A (signed) graph is called Laplacian integral if all eigenvalues of its Laplacian matrix are integers. In this paper, we determine all connected Laplacian integral signed graphs of maximum degree 3; among these signed graphs,there are two classes of Laplacian integral signed graphs, one contains 4 infinite families of signed graphs and another contains 29 individual signed graphs.
Style APA, Harvard, Vancouver, ISO itp.
3

Ma, Hongping, Zhengke Miao, Hong Zhu, Jianhua Zhang i Rong Luo. "Strong List Edge Coloring of Subcubic Graphs". Mathematical Problems in Engineering 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/316501.

Pełny tekst źródła
Streszczenie:
We study strong list edge coloring of subcubic graphs, and we prove that every subcubic graph with maximum average degree less than 15/7, 27/11, 13/5, and 36/13 can be strongly list edge colored with six, seven, eight, and nine colors, respectively.
Style APA, Harvard, Vancouver, ISO itp.
4

Wang, Fang, i Xiaoping Liu. "Coloring 3-power of 3-subdivision of subcubic graph". Discrete Mathematics, Algorithms and Applications 10, nr 03 (czerwiec 2018): 1850041. http://dx.doi.org/10.1142/s1793830918500416.

Pełny tekst źródła
Streszczenie:
Let [Formula: see text] be a graph and [Formula: see text] be a positive integer. The [Formula: see text]-subdivision [Formula: see text] of [Formula: see text] is the graph obtained from [Formula: see text] by replacing each edge by a path of length [Formula: see text]. The [Formula: see text]-power [Formula: see text] of [Formula: see text] is the graph with vertex set [Formula: see text] in which two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if the distance [Formula: see text] between [Formula: see text] and [Formula: see text] in [Formula: see text] is at most [Formula: see text]. Note that [Formula: see text] is the total graph [Formula: see text] of [Formula: see text]. The chromatic number [Formula: see text] of [Formula: see text] is the minimum integer [Formula: see text] for which [Formula: see text] has a proper [Formula: see text]-coloring. The total chromatic number of [Formula: see text], denoted by [Formula: see text], is the chromatic number of [Formula: see text]. Rosenfeld [On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396–402] and independently, Vijayaditya [On total chromatic number of a graph, J. London Math. Soc. 2 (1971) 405–408] showed that for a subcubic graph [Formula: see text], [Formula: see text]. In this note, we prove that for a subcubic graph [Formula: see text], [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
5

MOHAR, BOJAN. "Median Eigenvalues of Bipartite Subcubic Graphs". Combinatorics, Probability and Computing 25, nr 5 (21.06.2016): 768–90. http://dx.doi.org/10.1017/s0963548316000201.

Pełny tekst źródła
Streszczenie:
It is proved that the median eigenvalues of every connected bipartite graph G of maximum degree at most three belong to the interval [−1, 1] with a single exception of the Heawood graph, whose median eigenvalues are $\pm\sqrt{2}$. Moreover, if G is not isomorphic to the Heawood graph, then a positive fraction of its median eigenvalues lie in the interval [−1, 1]. This surprising result has been motivated by the problem about HOMO-LUMO separation that arises in mathematical chemistry.
Style APA, Harvard, Vancouver, ISO itp.
6

Bu, Yuehua, i Hongguo Zhu. "Strong edge-coloring of subcubic planar graphs". Discrete Mathematics, Algorithms and Applications 09, nr 01 (luty 2017): 1750013. http://dx.doi.org/10.1142/s1793830917500136.

Pełny tekst źródła
Streszczenie:
A strong[Formula: see text]-edge-coloring of a graph [Formula: see text] is a mapping [Formula: see text]: [Formula: see text], such that [Formula: see text] for every pair of distinct edges at distance at most two. The strong chromatical index of a graph [Formula: see text] is the least integer [Formula: see text] such that [Formula: see text] has a strong-[Formula: see text]-edge-coloring, denoted by [Formula: see text]. In this paper, we prove [Formula: see text] for any subcubic planar graph with [Formula: see text] and [Formula: see text]-cycles are not adjacent to [Formula: see text]-cycles.
Style APA, Harvard, Vancouver, ISO itp.
7

Cranston, Daniel W., i Seog-Jin Kim. "List-coloring the square of a subcubic graph". Journal of Graph Theory 57, nr 1 (2007): 65–87. http://dx.doi.org/10.1002/jgt.20273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

HE, Zhengyue, Li LIANG i Wei GAO. "Two-distance vertex-distinguishing total coloring of subcubic graphs". Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science 24, nr 2 (28.06.2023): 113–20. http://dx.doi.org/10.59277/pra-ser.a.24.2.02.

Pełny tekst źródła
Streszczenie:
A 2-distance vertex-distinguishing total coloring of graph G is a proper total coloring of G such that any pair of vertices at distance of two have distinct sets of colors. The 2-distance vertex-distinguishing total chromatic number $\chi_{d2}^{''}(G)$ of G is the minimum number of colors needed for a 2-distance vertex-distinguishing total coloring of G. In this paper, it's proved that if G is a subcubic graph, then $\chi_{d2}^{''}(G)\le 7$.
Style APA, Harvard, Vancouver, ISO itp.
9

Woodall, Douglas R. "The average degree of a subcubic edge‐chromatic critical graph". Journal of Graph Theory 91, nr 2 (29.11.2018): 103–21. http://dx.doi.org/10.1002/jgt.22423.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Little, C. H. C., i F. Rendl. "Operations preserving the pfaffian property of a graph". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 50, nr 2 (kwiecień 1991): 248–57. http://dx.doi.org/10.1017/s1446788700032730.

Pełny tekst źródła
Streszczenie:
AbstractPfaffian graphs are those which can be oriented so that the 1-factors have equal sign, as calculated according to the prescription of Kasteleyn. We consider various operations on graphs and examine their effect on the Pfaffian property. We show that the study of Pfaffian graphs may be reduced to the case of subcubic graphs (graphs in which no vertex has degree greater than 3) or bricks (3-connected bicritical graphs).
Style APA, Harvard, Vancouver, ISO itp.
11

Gharibyan, Aram H., i Petros A. Petrosyan. "ON LOCALLY-BALANCED 2-PARTITIONS OF BIPARTITE GRAPHS". Proceedings of the YSU A: Physical and Mathematical Sciences 54, nr 3 (253) (15.12.2020): 137–45. http://dx.doi.org/10.46991/pysu:a/2020.54.3.137.

Pełny tekst źródła
Streszczenie:
A \emph{$2$-partition of a graph $G$} is a function $f:V(G)\rightarrow \{0,1\}$. A $2$-partition $f$ of a graph $G$ is a \emph{locally-balanced with an open neighborhood}, if for every $v\in V(G)$, $\left\vert \vert \{u\in N_{G}(v)\colon\,f(u)=0\}\vert - \vert \{u\in N_{G}(v)\colon\,f(u)=1\}\vert \right\vert\leq 1$. A bipartite graph is \emph{$(a,b)$-biregular} if all vertices in one part have degree $a$ and all vertices in the other part have degree $b$. In this paper we prove that the problem of deciding, if a given graph has a locally-balanced $2$-partition with an open neighborhood is $NP$-complete even for $(3,8)$-biregular bipartite graphs. We also prove that a $(2,2k+1)$-biregular bipartite graph has a locally-balanced $2$-partition with an open neighbourhood if and only if it has no cycle of length $2 \pmod{4}$. Next, we prove that if $G$ is a subcubic bipartite graph that has no cycle of length $2 \pmod{4}$, then $G$ has a locally-balanced $2$-partition with an open neighbourhood. Finally, we show that all doubly convex bipartite graphs have a locally-balanced $2$-partition with an open neighbourhood.
Style APA, Harvard, Vancouver, ISO itp.
12

Chen, Lily, i Yanyi Li. "A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs". Axioms 11, nr 1 (17.01.2022): 33. http://dx.doi.org/10.3390/axioms11010033.

Pełny tekst źródła
Streszczenie:
Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. We prove that every connected subcubic graph G with δ(G)≥2 either has an inclusion chromatic index of at most six, or G is isomorphic to K^2,3, where its inclusion chromatic index is seven.
Style APA, Harvard, Vancouver, ISO itp.
13

Bueno, Letícia R., Lucia D. Penso, Fábio Protti, Victor R. Ramos, Dieter Rautenbach i Uéverton S. Souza. "On the hardness of finding the geodetic number of a subcubic graph". Information Processing Letters 135 (lipiec 2018): 22–27. http://dx.doi.org/10.1016/j.ipl.2018.02.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Khoeilar, R., H. Karami, M. Chellali, S. M. Sheikholeslami i L. Volkmann. "A proof of a conjecture on the differential of a subcubic graph". Discrete Applied Mathematics 287 (grudzień 2020): 27–39. http://dx.doi.org/10.1016/j.dam.2020.07.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Feghali, Carl, i Robert Šámal. "Decomposing a triangle-free planar graph into a forest and a subcubic forest". European Journal of Combinatorics 116 (luty 2024): 103878. http://dx.doi.org/10.1016/j.ejc.2023.103878.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kim, Seog-Jin, i Xiaopan Lian. "The square of every subcubic planar graph of girth at least 6 is 7-choosable". Discrete Mathematics 347, nr 6 (czerwiec 2024): 113963. http://dx.doi.org/10.1016/j.disc.2024.113963.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Lei, Yuxiang, Yulei Sui, Shin Hwei Tan i Qirun Zhang. "Recursive State Machine Guided Graph Folding for Context-Free Language Reachability". Proceedings of the ACM on Programming Languages 7, PLDI (6.06.2023): 318–42. http://dx.doi.org/10.1145/3591233.

Pełny tekst źródła
Streszczenie:
Context-free language reachability (CFL-reachability) is a fundamental framework for program analysis. A large variety of static analyses can be formulated as CFL-reachability problems, which determines whether specific source-sink pairs in an edge-labeled graph are connected by a reachable path, i.e., a path whose edge labels form a string accepted by the given CFL. Computing CFL-reachability is expensive. The fastest algorithm exhibits a slightly subcubic time complexity with respect to the input graph size. Improving the scalability of CFL-reachability is of practical interest, but reducing the time complexity is inherently difficult. In this paper, we focus on improving the scalability of CFL-reachability from a more practical perspective---reducing the input graph size. Our idea arises from the existence of trivial edges, i.e., edges that do not affect any reachable path in CFL-reachability. We observe that two nodes joined by trivial edges can be folded---by merging the two nodes with all the edges joining them removed---without affecting the CFL-reachability result. By studying the characteristic of the recursive state machines (RSMs), an alternative form of CFLs, we propose an approach to identify foldable node pairs without the need to verify the underlying reachable paths (which is equivalent to solving the CFL-reachability problem). In particular, given a CFL-reachability problem instance with an input graph G and an RSM, based on the correspondence between paths in G and state transitions in RSM, we propose a graph folding principle, which can determine whether two adjacent nodes are foldable by examining only their incoming and outgoing edges. On top of the graph folding principle, we propose an efficient graph folding algorithm GF. The time complexity of GF is linear with respect to the number of nodes in the input graph. Our evaluations on two clients (alias analysis and value-flow analysis) show that GF significantly accelerates RSM/CFL-reachability by reducing the input graph size. On average, for value-flow analysis, GF reduces 60.96% of nodes and 42.67% of edges of the input graphs, obtaining a speedup of 4.65× and a memory usage reduction of 57.35%. For alias analysis, GF reduces 38.93% of nodes and 35.61% of edges of the input graphs, obtaining a speedup of 3.21× and a memory usage reduction of 65.19%.
Style APA, Harvard, Vancouver, ISO itp.
18

JOHNSON, J. ROBERT, i KLAS MARKSTRÖM. "Turán and Ramsey Properties of Subcube Intersection Graphs". Combinatorics, Probability and Computing 22, nr 1 (3.10.2012): 55–70. http://dx.doi.org/10.1017/s0963548312000429.

Pełny tekst źródła
Streszczenie:
The discrete cube {0, 1}d is a fundamental combinatorial structure. A subcube of {0, 1}d is a subset of 2k of its points formed by fixing k coordinates and allowing the remaining d − k to vary freely. This paper is concerned with patterns of intersections among subcubes of the discrete cube. Two sample questions along these lines are as follows: given a family of subcubes in which no r + 1 of them have non-empty intersection, how many pairwise intersections can we have? How many subcubes can we have if among them there are no k which have non-empty intersection and no l which are pairwise disjoint?These questions are naturally expressed using intersection graphs. The intersection graph of a family of sets has one vertex for each set in the family with two vertices being adjacent if the corresponding subsets intersect. Let $\I(n,d)$ be the set of all n vertex graphs which can be represented as the intersection graphs of subcubes in {0, 1}d. With this notation our first question above asks for the largest number of edges in a Kr+1-free graph in $\I(n,d)$. As such it is a Turán-type problem. We answer this question asymptotically for some ranges of r and d. More precisely we show that if $(k+1)2^{\lfloor\frac{d}{k+1}\rfloor}<n\leq k2^{\lfloor\frac{d}{k}\rfloor}$ for some integer k ≥ 2 then the maximum edge density is $\bigl(1-\frac{1}{k}-o(1)\bigr)$ provided that n is not too close to the lower limit of the range.The second question can be thought of as a Ramsey-type problem. The maximum such n can be defined in the same way as the usual Ramsey number but only considering graphs which are in $\I(n,d)$. We give bounds for this maximum n mainly concentrating on the case that l is fixed, and make some comparisons with the usual Ramsey number.
Style APA, Harvard, Vancouver, ISO itp.
19

Wang, Dijian, i Yaoping Hou. "Integral signed subcubic graphs". Linear Algebra and its Applications 593 (maj 2020): 29–44. http://dx.doi.org/10.1016/j.laa.2020.01.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Bessy, Stéphane, Johannes Pardey i Dieter Rautenbach. "Exponential independence in subcubic graphs". Discrete Mathematics 344, nr 8 (sierpień 2021): 112439. http://dx.doi.org/10.1016/j.disc.2021.112439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Karthick, T., i C. R. Subramanian. "Star coloring of subcubic graphs". Discussiones Mathematicae Graph Theory 33, nr 2 (2013): 373. http://dx.doi.org/10.7151/dmgt.1672.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Joos, Felix, Dieter Rautenbach i Thomas Sasse. "Induced Matchings in Subcubic Graphs". SIAM Journal on Discrete Mathematics 28, nr 1 (styczeń 2014): 468–73. http://dx.doi.org/10.1137/130944424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Skulrattanakulchai, San. "Acyclic colorings of subcubic graphs". Information Processing Letters 92, nr 4 (listopad 2004): 161–67. http://dx.doi.org/10.1016/j.ipl.2004.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Liu, Chun-Hung, i Gexin Yu. "Linear colorings of subcubic graphs". European Journal of Combinatorics 34, nr 6 (sierpień 2013): 1040–50. http://dx.doi.org/10.1016/j.ejc.2013.02.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

ANGELES-CANUL, RICARDO JAVIER, RACHAEL M. NORTON, MICHAEL C. OPPERMAN, CHRISTOPHER C. PARIBELLO, MATTHEW C. RUSSELL i CHRISTINO TAMON. "QUANTUM PERFECT STATE TRANSFER ON WEIGHTED JOIN GRAPHS". International Journal of Quantum Information 07, nr 08 (grudzień 2009): 1429–45. http://dx.doi.org/10.1142/s0219749909006103.

Pełny tekst źródła
Streszczenie:
This paper studies quantum perfect state transfer on weighted graphs. We prove that the join of a weighted two-vertex graph with any regular graph has perfect state transfer. This generalizes a result of Casaccino et al.1 where the regular graph is a complete graph with or without a missing edge. In contrast, we prove that the half-join of a weighted two-vertex graph with any weighted regular graph has no perfect state transfer. As a corollary, unlike for complete graphs, adding weights in complete bipartite graphs does not produce perfect state transfer. We also observe that any Hamming graph has perfect state transfer between each pair of its vertices. The result is a corollary of a closure property on weighted Cartesian products of perfect state transfer graphs. Moreover, on a hypercube, we show that perfect state transfer occurs between uniform superpositions on pairs of arbitrary subcubes, thus generalizing results of Bernasconi et al.2 and Moore and Russell.3
Style APA, Harvard, Vancouver, ISO itp.
26

Munaro, Andrea. "On line graphs of subcubic triangle-free graphs". Discrete Mathematics 340, nr 6 (czerwiec 2017): 1210–26. http://dx.doi.org/10.1016/j.disc.2017.01.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Pradeep, Kavita, i V. Vijayalakshmi. "Star Edge Coloring of Subcubic Graphs". Applied Mathematics & Information Sciences 13, nr 2 (1.03.2019): 279–84. http://dx.doi.org/10.18576/amis/130216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Małafiejska, Anna, i Michał Małafiejski. "Interval incidence coloring of subcubic graphs". Discussiones Mathematicae Graph Theory 37, nr 2 (2017): 427. http://dx.doi.org/10.7151/dmgt.1962.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Atanasov, Risto, Mirko Petruševski i Riste Škrekovski. "Odd edge-colorability of subcubic graphs". Ars Mathematica Contemporanea 10, nr 2 (1.03.2016): 359–70. http://dx.doi.org/10.26493/1855-3974.957.97c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wigal, Michael C., Youngho Yoo i Xingxing Yu. "Approximating TSP walks in subcubic graphs". Journal of Combinatorial Theory, Series B 158 (styczeń 2023): 70–104. http://dx.doi.org/10.1016/j.jctb.2022.09.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kang, Ross J., Matthias Mnich i Tobias Müller. "Induced Matchings in Subcubic Planar Graphs". SIAM Journal on Discrete Mathematics 26, nr 3 (styczeń 2012): 1383–411. http://dx.doi.org/10.1137/100808824.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Chen, Min, i André Raspaud. "Acyclic improper choosability of subcubic graphs". Applied Mathematics and Computation 356 (wrzesień 2019): 92–98. http://dx.doi.org/10.1016/j.amc.2019.03.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Zhang, Xin. "Equitable vertex arboricity of subcubic graphs". Discrete Mathematics 339, nr 6 (czerwiec 2016): 1724–26. http://dx.doi.org/10.1016/j.disc.2016.02.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Basavaraju, Manu, i L. Sunil Chandran. "Acyclic edge coloring of subcubic graphs". Discrete Mathematics 308, nr 24 (grudzień 2008): 6650–53. http://dx.doi.org/10.1016/j.disc.2007.12.036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Kavita Pradeep i V Vijayalakshmi. "Star Chromatic Index of Subcubic Graphs". Electronic Notes in Discrete Mathematics 53 (wrzesień 2016): 155–64. http://dx.doi.org/10.1016/j.endm.2016.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Brešar, Boštjan, Nicolas Gastineau i Olivier Togni. "Packing colorings of subcubic outerplanar graphs". Aequationes mathematicae 94, nr 5 (28.04.2020): 945–67. http://dx.doi.org/10.1007/s00010-020-00721-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Hocquard, Hervé, i Petru Valicov. "Strong edge colouring of subcubic graphs". Discrete Applied Mathematics 159, nr 15 (wrzesień 2011): 1650–57. http://dx.doi.org/10.1016/j.dam.2011.06.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Gui, Hao, Weifan Wang, Yiqiao Wang i Zhao Zhang. "Equitable total-coloring of subcubic graphs". Discrete Applied Mathematics 184 (marzec 2015): 167–70. http://dx.doi.org/10.1016/j.dam.2014.11.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Fürst, Maximilian, Michael A. Henning i Dieter Rautenbach. "Uniquely restricted matchings in subcubic graphs". Discrete Applied Mathematics 262 (czerwiec 2019): 189–94. http://dx.doi.org/10.1016/j.dam.2019.02.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Chen, Min, André Raspaud i Weifan Wang. "6-Star-Coloring of Subcubic Graphs". Journal of Graph Theory 72, nr 2 (1.06.2012): 128–45. http://dx.doi.org/10.1002/jgt.21636.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Aboulker, Pierre, Marko Radovanović, Nicolas Trotignon, Théophile Trunck i Kristina Vušković. "Linear Balanceable and Subcubic Balanceable Graphs*". Journal of Graph Theory 75, nr 2 (14.02.2013): 150–66. http://dx.doi.org/10.1002/jgt.21728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Foucaud, Florent, Hervé Hocquard, Suchismita Mishra, Narayanan Narayanan, Reza Naserasr, Éric Sopena i Petru Valicov. "Exact square coloring of subcubic planar graphs". Discrete Applied Mathematics 293 (kwiecień 2021): 74–89. http://dx.doi.org/10.1016/j.dam.2021.01.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kerdjoudj, Samia, Alexander V. Kostochka i André Raspaud. "List star edge-coloring of subcubic graphs". Discussiones Mathematicae Graph Theory 38, nr 4 (2018): 1037. http://dx.doi.org/10.7151/dmgt.2037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kostochka, Alexandr, i Xujun Liu. "Packing (1,1,2,4)-coloring of subcubic outerplanar graphs". Discrete Applied Mathematics 302 (październik 2021): 8–15. http://dx.doi.org/10.1016/j.dam.2021.05.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lv, Jian-Bo, Jianxi Li i Nian Hong Zhou. "List injective edge-coloring of subcubic graphs". Discrete Applied Mathematics 302 (październik 2021): 163–70. http://dx.doi.org/10.1016/j.dam.2021.07.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Dvořák, Zdeněk, Riste Škrekovski i Martin Tancer. "List-Coloring Squares of Sparse Subcubic Graphs". SIAM Journal on Discrete Mathematics 22, nr 1 (styczeń 2008): 139–59. http://dx.doi.org/10.1137/050634049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Huo, Jingjing, Weifan Wang i Chuandong Xu. "Neighbor Sum Distinguishing Index of Subcubic Graphs". Graphs and Combinatorics 33, nr 2 (7.01.2017): 419–31. http://dx.doi.org/10.1007/s00373-017-1760-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Gu, Jing, Weifan Wang, Yiqiao Wang i Ying Wang. "Strict Neighbor-Distinguishing Index of Subcubic Graphs". Graphs and Combinatorics 37, nr 1 (9.11.2020): 355–68. http://dx.doi.org/10.1007/s00373-020-02246-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Juvan, Martin, Bojan Mohar i Riste Sˇkrekovski. "On list edge-colorings of subcubic graphs". Discrete Mathematics 187, nr 1-3 (czerwiec 1998): 137–49. http://dx.doi.org/10.1016/s0012-365x(97)00230-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zhu, Xuding. "Bipartite density of triangle-free subcubic graphs". Discrete Applied Mathematics 157, nr 4 (luty 2009): 710–14. http://dx.doi.org/10.1016/j.dam.2008.07.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii