Gotowa bibliografia na temat „Sub-auroral dynamics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sub-auroral dynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Sub-auroral dynamics"

1

Karpachev, Alexander. "Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms". Remote Sensing 13, nr 3 (2.02.2021): 534. http://dx.doi.org/10.3390/rs13030534.

Pełny tekst źródła
Streszczenie:
The dynamics of ionospheric troughs during intense geomagnetic storms is considered in this paper. The study is based on electron density measurements at CHAMP satellite altitudes of 405–465 km in the period from 2000 to 2002. A detailed analysis of four storms with Kp from 5+ to 9− is presented. Three troughs were identified: sub-auroral, mid-latitude, and low-latitude. The sub-auroral trough is usually defined as the main ionospheric trough (MIT). The mid-latitude trough is observed equatorward of the MIT and is associated with the magnetospheric ring current; therefore, it is named the ring ionospheric trough (RIT). The RIT appears at the beginning of the storm recovery phase at geomagnetic latitudes of 40–45° GMLat (L = 1.75–2.0) and exists, for a long time, at the late stage of the recovery phase at latitudes of the residual ring current 50–55° GMLat (L ~ 2.5–3.0). The low-latitude trough (LLT) is discovered for the first time. It forms only during great storms at the latitudes of the internal radiation belt (IRB), 34–45° GMLat (L = 1.45–2.0). The LLT’s lowest latitude of 34° GMLat was recorded in the night sector (2–3 LT). The occurrence probability and position of the RIT and LLT depend on the hemisphere and longitude.
Style APA, Harvard, Vancouver, ISO itp.
2

Badman, S. V., S. W. H. Cowley, J. C. Gérard i D. Grodent. "A statistical analysis of the location and width of Saturn's southern auroras". Annales Geophysicae 24, nr 12 (21.12.2006): 3533–45. http://dx.doi.org/10.5194/angeo-24-3533-2006.

Pełny tekst źródła
Streszczenie:
Abstract. A selection of twenty-two Hubble Space Telescope images of Saturn's ultraviolet auroras obtained during 1997–2004 has been analysed to determine the median location and width of the auroral oval, and their variability. Limitations of coverage restrict the analysis to the southern hemisphere, and to local times from the post-midnight sector to just past dusk, via dawn and noon. It is found that the overall median location of the poleward and equatorward boundaries of the oval with respect to the southern pole are at ~14° and ~16° co-latitude, respectively, with a median latitudinal width of ~2°. These median values vary only modestly with local time around the oval, though the poleward boundary moves closer to the pole near noon (~12.5°) such that the oval is wider in that sector (median width ~3.5°) than it is at both dawn and dusk (~1.5°). It is also shown that the position of the auroral boundaries at Saturn are extremely variable, the poleward boundary being located between 2° and 20° co-latitude, and the equatorward boundary between 6° and 23°, this variability contrasting sharply with the essentially fixed location of the main oval at Jupiter. Comparison with Voyager plasma angular velocity data mapped magnetically from the equatorial magnetosphere into the southern ionosphere indicates that the dayside aurora lie poleward of the main upward-directed field-aligned current region associated with corotation enforcement, which maps to ~20°–24° co-latitude, while agreeing reasonably with the position of the open-closed field line boundary based on estimates of the open flux in Saturn's tail, located between ~11° and ~15°. In this case, the variability in location can be understood in terms of changes in the open flux present in the system, the changes implied by the Saturn data then matching those observed at Earth as fractions of the total planetary flux. We infer that the broad (few degrees) diffuse auroral emissions and sub-corotating auroral patches observed in the dayside sector at Saturn result from precipitation from hot plasma sub-corotating in the outer magnetosphere in a layer a few Saturn radii wide adjacent to the magnetopause, probably having been injected either by Dungey-cycle or Vasyliunas-cycle dynamics on the nightside.
Style APA, Harvard, Vancouver, ISO itp.
3

Grocott, A., M. Lester, M. L. Parkinson, T. K. Yeoman, P. L. Dyson, J. C. Devlin i H. U. Frey. "Towards a synthesis of substorm electrodynamics: HF radar and auroral observations". Annales Geophysicae 24, nr 12 (21.12.2006): 3365–81. http://dx.doi.org/10.5194/angeo-24-3365-2006.

Pełny tekst źródła
Streszczenie:
Abstract. At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV) instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER) moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003). At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a way which has already proved extremely successful in studies of the dayside magnetosphere.
Style APA, Harvard, Vancouver, ISO itp.
4

Cowley, S. W. H., E. J. Bunce i R. Prangé. "Saturn's polar ionospheric flows and their relation to the main auroral oval". Annales Geophysicae 22, nr 4 (2.04.2004): 1379–94. http://dx.doi.org/10.5194/angeo-22-1379-2004.

Pełny tekst źródła
Streszczenie:
Abstract. We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of upward current bounding the region of open and closed field lines. Estimates indicate that auroras of brightness from a few kR to a few tens of kR can be produced by precipitating accelerated magnetospheric electrons of a few keV to a few tens of keV energy, if the current flows in a region which is sufficiently narrow, of the order of or less than ~1000 km (~1° latitude) wide. Arguments are also given which indicate that the auroras should typically be significantly brighter on the dawn side of the oval than at dusk, by roughly an order of magnitude, and should be displaced somewhat towards dawn by the down-tail outflow at dusk associated with the Vasyliunas cycle. Model estimates are found to be in good agreement with data derived from high quality images newly obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, both in regard to physical parameters, as well as local time effects. The implication of this picture is that the form, position, and brightness of Saturn's main auroral oval provide remote diagnostics of the magnetospheric interaction with the solar wind, including dynamics associated with magnetopause and tail plasma interaction processes. Key words. Magnetospheric physics (auroral phenomena, magnetosphere-ionosphere interactions, solar windmagnetosphere interactions)
Style APA, Harvard, Vancouver, ISO itp.
5

Mendillo, M., i C. Narvaez. "Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres". Annales Geophysicae 27, nr 4 (7.04.2009): 1679–94. http://dx.doi.org/10.5194/angeo-27-1679-2009.

Pełny tekst źródła
Streszczenie:
Abstract. The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions), the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA) and Hobart (Tasmania) have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2) spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976), 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means) showed a remarkable agreement at both sites under a variety of conditions. Yet, small differences do appear, and in systematic ways. We attempt to relate these to stresses imposed over a few days of a storm that mimic longer term morphology patterns occurring over seasonal and solar cycle time spans. Storm effects versus season point to possible mechanisms having hemispheric differences (as opposed to simply seasonal differences) in how solar wind energy is transmitted through the magnetosphere into the thermosphere-ionosphere system. Storm effects versus the strength of a geomagnetic storm may, similarly, be related to patterns seen during years of maximum versus minimum solar activity.
Style APA, Harvard, Vancouver, ISO itp.
6

Shagimuratov, I. I., L. Baran, P. Wielgosz i G. A. Yakimova. "The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations". Annales Geophysicae 20, nr 5 (31.05.2002): 655–60. http://dx.doi.org/10.5194/angeo-20-655-2002.

Pełny tekst źródła
Streszczenie:
Abstract. TEC data, obtained from over 60 GPS stations, were used to study the ionospheric effects of the 12–16 September 1999 magnetic storm over Europe. The spatial and temporal changes of the ionosphere were analysed as a time series of TEC maps, which present 15 min averages of TEC. The data set consisting of GPS observations, collected by a dense network of European stations, with sampling rate of 30 s, enable the creation of TEC maps with high spatial and temporal resolution. The storm included the positive as well as the negative phase. The positive phase took place during the first storm day of 12 September 1999. The short-lived daytime TEC enhancement was observed at all latitudes. The maximal enhancement reached a factor of 1.3–1.5. On the second and third days, the negative phase of the storm developed. The TEC decrease was registered regardless of time of the day. The TEC depression exceeded 70% relative to quiet days. On the following days (15 and 16 September), a significant daytime enhancement of TEC was observed once again. The complex occurrence of the ionospheric storm was probably related to the features of development of the magnetic storm. We found out that during the storm the large and medium-scale irregularities developed in the high-latitude ionosphere. The multi-stations technique, employed to create TEC maps, was particularly successful while studying the mid-latitude ionospheric trough. We found out that the essential changes of TEC during the storm, which were registered at the auroral and sub-auroral ionosphere, were connected with the effect of the trough and its dynamics, which depends on geomagnetic activity.Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; mid-latitude ionosphere)
Style APA, Harvard, Vancouver, ISO itp.
7

Orsolini, Y. J., J. Urban i D. P. Murtagh. "Nitric acid in the stratosphere based on Odin observations from 2001 to 2007 – Part 2: High-altitude polar enhancements". Atmospheric Chemistry and Physics Discussions 8, nr 3 (26.05.2008): 9591–605. http://dx.doi.org/10.5194/acpd-8-9591-2008.

Pełny tekst źródła
Streszczenie:
Abstract. The wintertime abundance of nitric acid (HNO3) in the polar upper stratosphere displays a strong inter-annual variability, and is known to be strongly influenced by energetic particle precipitation, primarily during solar proton events, but also by precipitating electrons in the auroral zone. While wintertime HNO3 enhancements in the polar upper stratosphere had been occasionally observed before, from the ground or from satellite, we present here measurements by the Sub-Millimeter Radiometer instrument aboard the Odin satellite through 6 full annual cycles (2001 to 2007). Major solar proton events, e.g. during November 2001 or the Halloween solar storms of autumn 2003, lead to a two-stage HNO3 enhancement, likely involving different chemical reactions: a fast (about 1 week) in-situ enhancement from the mid to the upper stratosphere is followed by a slower, longer-lasting one, whereby anomalies originating in the upper stratosphere can descend within the polar vortex into the lower stratosphere. We highlight the fact that the actual chemical coupling between the upper and lower atmosphere involves a complex interplay of chemistry, dynamics and energetic particle precipitation.
Style APA, Harvard, Vancouver, ISO itp.
8

Siskind, David E., V. Lynn Harvey, Fabrizio Sassi, John P. McCormack, Cora E. Randall, Mark E. Hervig i Scott M. Bailey. "Two- and three-dimensional structures of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause event". Atmospheric Chemistry and Physics 21, nr 18 (22.09.2021): 14059–77. http://dx.doi.org/10.5194/acp-21-14059-2021.

Pełny tekst źródła
Streszczenie:
Abstract. We use the Specified Dynamics version of the Whole Atmosphere Community Climate Model Extended (SD-WACCMX) to model the descent of nitric oxide (NO) and other mesospheric tracers in the extended, elevated stratopause phase of the 2013 sudden stratospheric warming (SSW). The dynamics are specified with a high-altitude version of the Navy Global Environmental Model (NAVGEM-HA). Consistent with our earlier published results, we find that using a high-altitude meteorological analysis to nudge WACCMX allows for a realistic simulation of the descent of lower-thermospheric nitric oxide down to the lower mesosphere, near 60 km. This is important because these simulations only included auroral electrons and did not consider additional sources of NO from higher-energy particles that might directly produce ionization, and hence nitric oxide, below 80–85 km. This suggests that the so-called energetic particle precipitation indirect effect (EPP-IE) can be accurately simulated, at least in years of low geomagnetic activity, such as 2013, without the need for additional NO production, provided the meteorology is accurately constrained. Despite the general success of WACCMX in bringing upper-mesospheric NO down to 55–60 km, a detailed comparison of the WACCMX fields with the analyzed NAVGEM-HA H2O and satellite NO and H2O data from the Solar Occultation for Ice Experiment (SOFIE) and the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) reveals significant differences in the latitudinal and longitudinal distributions at lower altitudes. This stems from the tendency for WACCMX descent to maximize at sub-polar latitudes, and while such sub-polar descent is seen in the NAVGEM-HA analysis, it is more transient than in the WACCMX simulation. These differences are linked to differences in the transformed Eulerian mean (TEM) circulation between NAVGEM-HA and WACCMX, most likely arising from differences in how gravity wave forcing is represented. To attempt to compensate for the differing distributions of model vs. observed NO and to enable us to quantify the total amount of upper-atmospheric NO delivered to the stratopause region, we use potential vorticity and equivalent latitude coordinates. Preliminary results suggest both model and observations are generally consistent with NO totals in the range of 0.1–0.25 gigamoles (GM).
Style APA, Harvard, Vancouver, ISO itp.
9

Lühr, H., A. Aylward, S. C. Bucher, A. Pajunpää, K. Pajunpää, T. Holmboe i S. M. Zalewski. "Westward moving dynamic substorm features observed with the IMAGE magnetometer network and other ground-based instruments". Annales Geophysicae 16, nr 4 (30.04.1998): 425–40. http://dx.doi.org/10.1007/s00585-998-0425-y.

Pełny tekst źródła
Streszczenie:
Abstract. We present the ground signatures of dynamic substorm features with particular emphasis on the event interpretation capabilities provided by the IMAGE magnetometer network. This array covers the high latitudes from the sub-auroral to the cusp/cleft region. An isolated substorm on 11 Oct. 1993 during the late evening hours exhibited many of well-known features such as the Harang discontinuity, westward travelling surge and poleward leap, but also discrete auroral forms, known as auroral streamers, appeared propagating westward along the centre of the electrojet. Besides the magnetic field measurements, there were auroral observations and plasma flow and conductivity measurements obtained by EISCAT. The data of all three sets of instruments are consistent with the notion of upward field-aligned currents associated with the moving auroral patches. A detailed analysis of the electrodynamic parameters in the ionosphere, however, reveals that they do not agree with the expectations resulting from commonly used simplifying approximations. For example, the westward moving auroral streamers which are associated with field-aligned current filaments, are not collocated with the centres of equivalent current vortices. Furthermore, there is a clear discrepancy between the measured plasma flow direction and the obtained equivalent current direction. All this suggests that steep conductivity gradients are associated with the transient auroral forms. Also self-induction effects in the ionosphere may play a role for the orientation of the plasma flows. This study stresses the importance of multi-instrument observation for a reliable interpretation of dynamic auroral processes.Keywords. Ionosphere (Auroral ionosphere; Electric fields and currents; Ionosphere-magnetosphere interactions).
Style APA, Harvard, Vancouver, ISO itp.
10

Taylor, J. R., M. Lester, T. K. Yeoman, B. A. Emery, D. J. Knipp, D. Orr, S. I. Solovyev, T. J. Hughes i H. Lühr. "The response of the magnetosphere to the passage of a coronal mass ejection on March 20−21 1990". Annales Geophysicae 15, nr 6 (30.06.1997): 671–84. http://dx.doi.org/10.1007/s00585-997-0671-4.

Pełny tekst źródła
Streszczenie:
Abstract. The geomagnetic response to the passage of a coronal mass ejection (CME) is studied. The passage of the CME resulted in a storm sudden commencement (SSC) at 2243 UT on March 20 1990 with disturbed magnetic activity during the following 24 h. The auroral, sub-auroral and equatorial magnetic response to the southward turning at 1314 (±5) UT on March 21 and the equatorial response to the southward turning associated with the SSC on 20 March are discussed in terms of existing models. It is found that the auroral and sub-auroral response to the southward turning associated with the SSC is a factor 2 or more quicker than normal due to the shock in the solar wind dynamic pressure. The low-latitude response time to the southward turning, characterised by Dst and the magnetopause current corrected Dst*, is unaffected by the shock. Dst and Dst*, characteristic of the equatorial magnetic field, responded to the 1314 (±5) UT southward turning prior to the first observed substorm expansion phase onset, suggesting that a dayside loading process was responsible for the initial enhancement in the ring current rather than nightside particle injection. The response time of the auroral and sub-auroral magnetic field to the southward turning at 1314 (±5) UT on March 21 is measured at a variety of longitudes and latitudes. The azimuthal propagation velocity of the response to the southward turning varied considerably with latitude, ranging from ~8 km s–1 at 67°N to ~4 km s–1 at 55°N. The southward velocity of the equatorward boundary of the northern polar convection pattern has been measured. This velocity was ~1.2 km s–1 at 1600 MLT, although there was evidence that this may vary at different local times.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Sub-auroral dynamics"

1

Pramodkumar, Neeraj. "Large-scale observations of the spatial and temporal dynamics of quiet-time Sub-auroral Polarization Streams using SuperDARN HF Radars". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23845.

Pełny tekst źródła
Streszczenie:
The Sub-Auroral Polarization Stream (SAPS) is a narrow, intense and persistent westward (sunward) ionospheric convection flow channel observed equatorward of the auroral electron precipitation boundary, predominantly on the nightside. Previous studies have identified disturbed-time SAPS to be a geomagnetic activity dependent phenomenon, which exhibits average pre-midnight and post-midnight velocities of 1000 m/s and 400 m/s respectively. Numerous studies have reported even narrower and more intense westward plasma flows called SAIDs to be embedded within SAPS channels, especially during substorm recovery phases. Quiet-time SAPS studies, although relatively few, have shown these SAPS to be associated with much weaker velocities and to be influenced by substorm intensifications. However, these studies have been limited in their ability to make simultaneous measurements of SAPS flow velocities over many hours of MLT. The recent expansion of SuperDARN radars to middle latitudes facilitates unprecedented large-scale observations of SAPS over 10 hours of MLT with high temporal and spatial resolution. In this thesis, we first examine the spatial and temporal dynamics of one quiet-time SAPS event, using the mid-latitude SuperDARN radars. The SAPS was identified as elevated flows lying equatorward of the auroral electron precipitation boundary specified by the NOAA POES satellites. We demonstrate the L-shell fitting technique to analyze the dynamics in the strength and direction of the two-dimensional SAPS flow velocities at three separate magnetic longitudes. The quiet-time SAPS event thus examined lasted for over 4 hours in UT and extended over 10 hours of MLT, as is commonly observed for disturbed-time SAPS. However, the decrease in SAPS peak latitudes and peak velocities with MLT and MLon respectively, observed for disturbed-time SAPS, was not observed for this event. We also find the dynamics of the enhancements in the quiet-time SAPS peak velocities, to correlate well with that of substorm intensifications identified using the CARISMA magnetometers. We then identify numerous such conjunctions between quiet-time SAPS and substorms to infer that quiettime SAPS were almost always associated with substorms and their durations were well bounded by that of the substorms for most cases. Next, we extend this analysis over to a statistical study of quiet-time and disturbed-time SAPS events identified over two years. From this study, we find quiet-time SAPS to occur between the relatively narrow nightside MLT range of [18, 4] whereas disturbed-time SAPS was found to occur between the broader nightside MLT range of [15, 5]. We also find the occurrence percentage of quiet-time SAPS to be at its highest between the narrow latitude range of 60-66⁰, while disturbed-time SAPS was observed to occur within a much broader latitude range of 55-66⁰. Finally, the calibration and validation of a control card used in the SuperDARN radar transmitters, is discussed.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Sub-auroral dynamics"

1

Pfaff, Robert F., Carmen Liebrecht, Jean-Jacques Berthelier, Michel Malingre, Michel Parrot i Jean-Pierre Lebreton. "DEMETER satellite observations of plasma irregularities in the topside ionosphere at low, middle, and sub-auroral latitudes and their dependence on magnetic storms". W Midlatitude Ionospheric Dynamics and Disturbances, 297–310. Washington, D. C.: American Geophysical Union, 2008. http://dx.doi.org/10.1029/181gm27.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii