Gotowa bibliografia na temat „Sturm-Liouville type”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sturm-Liouville type”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Sturm-Liouville type"
Goktas, Sertac. "A New Type of Sturm-Liouville Equation in the Non-Newtonian Calculus". Journal of Function Spaces 2021 (31.10.2021): 1–8. http://dx.doi.org/10.1155/2021/5203939.
Pełny tekst źródłaCernea, Aurelian. "Variational inclusions for a Sturm-Liouville type differential inclusion". Mathematica Bohemica 135, nr 2 (2010): 171–78. http://dx.doi.org/10.21136/mb.2010.140694.
Pełny tekst źródłaBas, Erdal, Ramazan Ozarslan i Dumitru Baleanu. "Sturm-Liouville difference equations having Bessel and hydrogen atom potential type". Open Physics 16, nr 1 (26.12.2018): 801–9. http://dx.doi.org/10.1515/phys-2018-0100.
Pełny tekst źródłaLi, Shuang, Jinming Cai i Kun Li. "Matrix Representations for a Class of Eigenparameter Dependent Sturm–Liouville Problems with Discontinuity". Axioms 12, nr 5 (15.05.2023): 479. http://dx.doi.org/10.3390/axioms12050479.
Pełny tekst źródłaButerin, Sergey, i G. Freiling. "Inverse spectral-scattering problem for the Sturm-Liouville operator on a noncompact star-type graph". Tamkang Journal of Mathematics 44, nr 3 (30.09.2013): 327–49. http://dx.doi.org/10.5556/j.tkjm.44.2013.1422.
Pełny tekst źródłaKarahan, D., i K. R. Mamedov. "ON A q-BOUNDARY VALUE PROBLEM WITH DISCONTINUITY CONDITIONS". Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 13, nr 4 (2021): 5–12. http://dx.doi.org/10.14529/mmph210401.
Pełny tekst źródłaRynne, Bryan P. "The asymptotic distribution of the eigenvalues of right definite multiparameter Sturm-Liouville systems". Proceedings of the Edinburgh Mathematical Society 36, nr 1 (luty 1993): 35–47. http://dx.doi.org/10.1017/s0013091500005873.
Pełny tekst źródłaPorter, D., i D. S. G. Stirling. "Integral operators of Sturm-Liouville type". Integral Equations and Operator Theory 38, nr 1 (marzec 2000): 51–65. http://dx.doi.org/10.1007/bf01192301.
Pełny tekst źródłaJOHNSON, RUSSELL, i LUCA ZAMPOGNI. "SOME REMARKS CONCERNING REFLECTIONLESS STURM–LIOUVILLE POTENTIALS". Stochastics and Dynamics 08, nr 03 (wrzesień 2008): 413–49. http://dx.doi.org/10.1142/s0219493708002391.
Pełny tekst źródłaButerin, Sergey. "An inverse spectral problem for Sturm-Liouville-type integro-differential operators with robin boundary conditions". Tamkang Journal of Mathematics 50, nr 3 (2.09.2019): 207–21. http://dx.doi.org/10.5556/j.tkjm.50.2019.3347.
Pełny tekst źródłaRozprawy doktorskie na temat "Sturm-Liouville type"
Alici, Haydar. "A General Pseudospectral Formulation Of A Class Of Sturm-liouville Systems". Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612435/index.pdf.
Pełny tekst źródładinger form may be transformed into a more tractable form. This tractable form will be called here a weighted equation of hypergeometric type with a perturbation (WEHTP) since the non-weighted and unperturbed part of it is known as the equation of hypergeometric type (EHT). It is well known that the EHT has polynomial solutions which form a basis for the Hilbert space of square integrable functions. Pseudospectral methods based on this natural expansion basis are constructed to approximate the eigenvalues of WEHTP, and hence the energy eigenvalues of the Schrö
dinger equation. Exemplary computations are performed to support the convergence numerically.
Navarro, Sepúlveda Gustavo Estéban. "Singular Limits in Liouville Type Equations With Exponential Neumann Data". Tesis, Universidad de Chile, 2010. http://www.repositorio.uchile.cl/handle/2250/103684.
Pełny tekst źródłaMarcel, Patrick. "Nouvelle série de supralgébres de Lie généralisant l'algébre de Virasoro et opérateurs différentiels de type Sturm-Liouville". Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11005.
Pełny tekst źródłaMtiri, Foued. "Études des solutions de quelques équations aux dérivées partielles non linéaires via l'indice de Morse". Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0150/document.
Pełny tekst źródłaThe main concern of this thesis deals with the study of solutions of several elliptic partial differential equations via the Morse index, including the stable solutions, i.e. when the Morse index is zero. The thesis has two independent parts. In the first part, under suplinear and subcritical assumptions on f, we establish firstly some explicit estimation for the L1 norms of solutions to -Δu = f(u) avec u = 0 on the boundary, via its Morse index. We propose an approach more transparent and easier than the work of Yang [1998], which allow us to treat some nonlinearities very close to the critical growth. These results motivated us to consider the polyharmonic equations (-Δ)ku = f(x; u) with especially k = 2 and 3. With the hypothesis on f similar to Yang [1998] and appropriate boundary conditions, we obtain for the _rst time some explicit estimations of solution via its Morse index, for the polyharmonic equations.In the second part, we consider a Lane-Emden system -Δu = ρ(x)vp; -Δv = ρ(x)u_; u; v > 0; in RN; with 1 < p< θ and a radial positive weight ρ. We prove the non-existence of stable solution in small dimension case. Our results improve the previous works Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], especially we prove some general Liouville type results for stable solutions in small dimension which hold true for any 1 < ρ min(4 3 ; θ)
LIN, JI-TIAN, i 林吉田. "On the eigenvalues of the sturm-liouville type differential equations". Thesis, 1990. http://ndltd.ncl.edu.tw/handle/58164804038595731403.
Pełny tekst źródłaBhat, Srivatsa K. "On the isospectrals of Rayleigh and Timoshenko beams and a new version of Bresse-Timoshenko equations". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5399.
Pełny tekst źródłaCzęści książek na temat "Sturm-Liouville type"
Bandle, Catherine. "Extremal Problems for Eigenvalues of the Sturm-Liouville Type". W General Inequalities 5, 319–36. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7192-1_26.
Pełny tekst źródłaWeidmann, Joachim. "Appendix to section 6: Semi-boundedness of Sturm-Liouville type operators". W Spectral Theory of Ordinary Differential Operators, 104–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077970.
Pełny tekst źródłaAbramovich, Shoshana. "Bounds of Jensen’s Type Inequality and Eigenvalues of Sturm–Liouville System". W Springer Optimization and Its Applications, 1–11. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3498-6_1.
Pełny tekst źródłaAleroev, Temirkhan, i Hedi Aleroeva. "Problems of Sturm–Liouville type for differential equations with fractional derivatives". W Fractional Differential Equations, redaktorzy Anatoly Kochubei i Yuri Luchko, 21–46. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571660-002.
Pełny tekst źródłaVladimirov, A. A., i I. A. Sheipak. "On Spectral Periodicity for the Sturm–Liouville Problem: Cantor Type Weight, Neumann and Third Type Boundary Conditions". W Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 509–16. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0648-0_32.
Pełny tekst źródłaMuratbekov, Mussakan B., Madi M. Muratbekov i Asijat N. Dadaeva. "A Sturm-Liouville Operator with a Negative Parameter and Its Applications to the Study of Differential Properties of Solutions for a Class of Hyperbolic Type Equations". W Springer Proceedings in Mathematics & Statistics, 258–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67053-9_24.
Pełny tekst źródła"13. A primer on equations of Sturm–Liouville type". W Differential Equations, 201–20. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110652864-013.
Pełny tekst źródła"8. The Calculation of Eigenvalues for Sturm-Liouville Type Systems". W An Introduction to Invariant Imbedding, 133–46. Society for Industrial and Applied Mathematics, 1992. http://dx.doi.org/10.1137/1.9781611971279.ch8.
Pełny tekst źródłaYang, Chen Ning. "Generalization of Sturm-Liouville Theory to a System of Ordinary Differential Equations with Dirac Type Spectrum". W Selected Papers of Chen Ning Yang II, 106–17. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814449021_0015.
Pełny tekst źródłaStreszczenia konferencji na temat "Sturm-Liouville type"
Şen, Erdoğan, Azad Bayramov, Theodore E. Simos, George Psihoyios, Ch Tsitouras i Zacharias Anastassi. "On a Discontinuous Sturm—Liouville Type Problem with Retarded Argument". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637824.
Pełny tekst źródłaShokouhmand, Hossein, Seyed Reza Mahmoudi i Kaveh Habibi. "Analytical Solution of Hyperbolic Heat Conduction Equation for a Finite Slab With Arbitrary Boundaries, Initial Condition, and Stationary Heat Source". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62058.
Pełny tekst źródłaKrikkis, Rizos N., Stratis V. Sotirchos i Panagiotis Razelos. "Bifurcation Analysis for Horizontal Longitudinal Fins Under Multi-Boiling Conditions". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33632.
Pełny tekst źródłaMuratbekov, Mussakan B., i Madi M. Muratbekov. "Spectral properties of the Sturm-Liouville operator with a parameter that changes sign and their usage to the study of the spectrum of differential operators of mathematical physics belonging to different types". W INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5049078.
Pełny tekst źródła