Gotowa bibliografia na temat „STRUCTURE-PROPERTY-PERFORMANCE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „STRUCTURE-PROPERTY-PERFORMANCE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "STRUCTURE-PROPERTY-PERFORMANCE"
Saleh, Mustaruddin, Giriati Zahirdin i Ellen Octaviani. "Ownership structure and corporate performance: evidence from property and real estate public companies in Indonesia". Investment Management and Financial Innovations 14, nr 2 (27.07.2017): 252–63. http://dx.doi.org/10.21511/imfi.14(2-1).2017.10.
Pełny tekst źródłaHardin III, William, Matthew Hill i James Hopper. "Ownership Structure, Property Performance, Multifamily Properties, and REITs". Journal of Real Estate Research 31, nr 3 (1.01.2009): 285–306. http://dx.doi.org/10.1080/10835547.2009.12091256.
Pełny tekst źródłaSchaper, A., D. Zenke, E. Schulz, R. Hirte i M. Taege. "Structure–property relationships of high-performance polyethylene fibres". Physica Status Solidi (a) 116, nr 1 (16.11.1989): 179–95. http://dx.doi.org/10.1002/pssa.2211160116.
Pełny tekst źródłaMcGrail, P. T., i A. C. Street. "Structure-property relationships in high-performance thermoset-thermoplastic blends". Makromolekulare Chemie. Macromolecular Symposia 64, nr 1 (grudzień 1992): 75–84. http://dx.doi.org/10.1002/masy.19920640110.
Pełny tekst źródłaFan, Wen Jie, i Fang Liu. "Mechanism of the Effect of Interface Structure on the Anti-Impact Property of Polycrystalline Diamond Compact". Applied Mechanics and Materials 71-78 (lipiec 2011): 3284–87. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.3284.
Pełny tekst źródłaChow, A. W., R. D. Hamlin, A. L. Landis i K. S. Y. Lau. "Structure‐property relations in processing high‐performance polyisoimide–imide resins". Journal of Rheology 36, nr 8 (listopad 1992): 1651–68. http://dx.doi.org/10.1122/1.550367.
Pełny tekst źródłaLiu, Huazhang, i Wenfeng Han. "Wüstite-based catalyst for ammonia synthesis: Structure, property and performance". Catalysis Today 297 (listopad 2017): 276–91. http://dx.doi.org/10.1016/j.cattod.2017.04.062.
Pełny tekst źródłaBauer, Felix, Manuel Kempf, Frank Weiland i Peter Middendorf. "Structure-property relationships of basalt fibers for high performance applications". Composites Part B: Engineering 145 (lipiec 2018): 121–28. http://dx.doi.org/10.1016/j.compositesb.2018.03.028.
Pełny tekst źródłaCui, Shu Ling, Jun Ping Zhu, Bao Mei Li, Shao Peng Wang i Ying Liu. "Structure and Physical Properties of Jade Fiber". Advanced Materials Research 441 (styczeń 2012): 767–71. http://dx.doi.org/10.4028/www.scientific.net/amr.441.767.
Pełny tekst źródłaFan, Wen Jie, i Fang Liu. "Mechanism of the Effect of Interface Structure on the Thermal Stability of Polycrystalline Diamond Compact". Applied Mechanics and Materials 44-47 (grudzień 2010): 2467–71. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2467.
Pełny tekst źródłaRozprawy doktorskie na temat "STRUCTURE-PROPERTY-PERFORMANCE"
Burcham, Megan Noel. "Multiscale structure-property relationships of ultra-high performance concrete". Thesis, Mississippi State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10141618.
Pełny tekst źródłaThe structure-property relationships of Ultra-High Performance Concrete (UHPC) were quantified using imaging techniques to characterize the multiscale hierarchical heterogeneities and the mechanical properties. Through image analysis the average size, percent area, nearest neighbor distance, and relative number density of each inclusion type was determined and then used to create Representative Volume Element (RVE) cubes for use in Finite Element (FE) analysis. Three different size scale RVEs at the mesoscale were found to best represent the material: the largest length scale (35 mm side length) included steel fibers, the middle length scale (0.54 mm side length) included large voids and silica sand grains, and the smallest length scale (0.04 mm side length) included small voids and unhydrated cement grains. By using three length scales of mesoscale FE modeling, the bridge of information to the macroscale cementitious material model is more physically based.
Hu, Jiazhi. "UNDERSTANDING THE STRUCTURE-PROPERTY-PERFORMANCE RELATIONSHIP OF SILICON NEGATIVE ELECTRODES". UKnowledge, 2019. https://uknowledge.uky.edu/cme_etds/109.
Pełny tekst źródłaPark, Conrad. "Mechanical Performance and Structure-Property Relations in6061B Aluminum Metal Matrix Composites". Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1547842396716777.
Pełny tekst źródłaZhang, Ronghui. "Ownership, property rights structure and economic performance in developed and transitional countries". Berlin Logos-Verl, 2008. http://d-nb.info/988919591/04.
Pełny tekst źródłaWaletzko, Ryan Scott. "Determining soft segment structure-property effects in the enhancement of segmented polyurethane performance". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46671.
Pełny tekst źródłaIncludes bibliographical references.
Liquid Crystalline Elastomer (LCE)-inspired segmented polyurethane elastomers possessing widely different extents of ordering were created to mimic the hierarchical structure of the continuous matrix and superior mechanical performance of spider silk fibers. The silk's remarkable toughness originates from a fiber morphology that possesses [beta]-pleated crystalline sheets within an amorphous matrix. In the polyurethane materials, various extents of poly(ethylene oxide) (PEO) soft segment ordering were implemented within continuous soft domains that were connected by hexamethylene diisocyanate-butanediol (HDI-BDO) hard segments. Soft segment crystallinity studies revealed the need to optimize the extent of continuous soft domain ordering. Highly crystalline PEO soft segments, while they display good microphase segregation properties, sacrifice extensibility due to their high melting transition temperature. Moderately crystalline PEO soft segments, meanwhile, possess less defined phase segregation but enhanced mechanical properties from their reversible dispersed crystalline soft segment domains. Non-crystalline Pluronic copolymer systems had good mechanical properties that resulted from both a strong hard segment incompatibility and a highly mobile soft segment matrix. Hydrogen-bonded hard domain shearing during in-situ tensile deformation yields oriented hard blocks that align at a preferred tilt angle of ±60° from the strain direction. Extensive alignment and orientation of the moderately-ordered PEO soft segments occurred during deformation, which was consistent with its observed mechanical behavior. Pluronic-containing segmented polyurethanes formed an ordered mesophase in the continuous soft matrix during deformation. A series of cyclic, aliphatic polyurethanes with dicyclohexyl methane diisocyanate (HMDI) hard segments and poly(tetramethylene oxide) (PTMO) soft segments was synthesized to study compositional effects on the extent of soft segment mixing, and how these effects translated to both mechanical and barrier performance. Shorter soft segment chain systems displayed a greater hard segment compatibility, which resulted in materials that were both more rigid mechanically and provided better barrier characteristics.
(cont.) Longer soft segments in the continuous polymer matrix displayed a more phase segregated structure, which enhanced their mechanical properties but sacrificed barrier effectiveness. Incorporation of dimethyl propane diol (DMPD), a branched chain extender, created a completely amorphous polyurethane matrix. Polyurethane/Laponite nanocomposites were also created using particles that were capable of preferentially associating with hard or soft segments. HMDI-BDO-PTMO polyurethane/Laponite nanocomposites demonstrated drastically reduced mechanical performance (~13-fold decrease in toughness and ~10-fold decrease in extensibility). The deteriorated mechanical performance was attributed to the formation of an interconnected hard segment continuous morphology that significantly reduced matrix extensibility. HMDI-DMPDPTMO polyurethane/Laponite composites, on the other hand, only experienced modest reductions in extensibility (-70% of total initial extensibility) while maintaining toughess and increasing initial modulus 10-fold. Mechanical behavior resulted from well-dispersed Laponite clay platelets that reinforced the amorphous polymer matrix while imposing modest chain segmental mobility restrictions.
by Ryan Scott Waletzko.
Ph.D.
Nikkhah, Hamdam. "Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37144.
Pełny tekst źródłaLee, Yong-Joon. "Structure-property behavior of novel high performance thermoplastic and thermoset structural adhesives and composite matrix resins". Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-162715/.
Pełny tekst źródłaMorrell, Guy D. "Portfolio construction in the UK property market : an investigation of the relative importance of fund structure and stock selection in explaining performance". Thesis, University of Reading, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250718.
Pełny tekst źródłaSelli, Daniele. "Structure Property and Prediction of Novel Materials using Advanced Molecular Dynamics Techniques: Novel Carbons, Germaniums and High-Performance Thermoelectrics". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-150244.
Pełny tekst źródłaGardner, Slade Havelock II. "An Investigation of the Structure-Property Relationships for High Performance Thermoplastic Matrix, Carbon Fiber Composites with a Tailored Polyimide Interphase". Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30757.
Pełny tekst źródłaPh. D.
Książki na temat "STRUCTURE-PROPERTY-PERFORMANCE"
Chicoine, David L. Property tax assessment in Illinois: Structure and performance. Springfield, Ill. (201 E. Adams St., Suite 350, Springfield 62701): Illinois Tax Foundation, 1986.
Znajdź pełny tekst źródła1953-, Urban Marek W., Craver Clara D i American Chemical Society. Division of Polymeric Materials: Science and Engineering., red. Structure-property relations in polymers: Spectroscopy and performance. Washington, DC: American Chemical Society, 1993.
Znajdź pełny tekst źródłaMilioti, Evangelia. Structure/property relationships in high performance fibres and composites. Manchester: UMIST, 1996.
Znajdź pełny tekst źródłaGreener Surface Active Reagents: Structure, Property and Performance Relationships. [New York, N.Y.?]: [publisher not identified], 2013.
Znajdź pełny tekst źródła1944-, Erickson John, i Wang Ko 1955-, red. Real estate investment trusts: Structure, performance, and investment opportunities. Oxford: Oxford University Press, 2003.
Znajdź pełny tekst źródłaPolymeric Foams Structure-Property-Performance. Elsevier, 2018. http://dx.doi.org/10.1016/c2012-0-06136-4.
Pełny tekst źródłaObi, Bernard. Polymeric Foams Structure-Property-Performance: A Design Guide. Elsevier Science & Technology Books, 2017.
Znajdź pełny tekst źródłaObi, Bernard. Polymeric Foams Structure-Property-Performance: A Design Guide. Elsevier Science & Technology Books, 2017.
Znajdź pełny tekst źródłaRay, Suprakas Sinha. Processing of Polymer-based Nanocomposites: Processing-structure-property-performance relationships. Springer, 2018.
Znajdź pełny tekst źródłaRay, Suprakas Sinha. Processing of Polymer-based Nanocomposites: Processing-structure-property-performance relationships. Springer, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "STRUCTURE-PROPERTY-PERFORMANCE"
Goh, Chung-Hyun, Adam P. Dachowicz, Janet K. Allen i Farrokh Mistree. "Exploring the Performance-Property-Structure Solution Space in Friction Stir Welding". W Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015), 347–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48170-8_41.
Pełny tekst źródłaGoh, Chung-Hyun, Adam P. Dachowicz, Janet K. Allen i Farrokh Mistree. "Exploring the Performance-Property-Structure Solution Space in Friction Stir Welding". W Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015), 347–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119139508.ch41.
Pełny tekst źródłaDubey, K. A., i Y. K. Bhardwaj. "High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations". W Handbook on Synthesis Strategies for Advanced Materials, 1–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1892-5_1.
Pełny tekst źródłaGoh, Chung-Hyun, Adam P. Dachowicz, Janet K. Allen i Farrokh Mistree. "A Computational Method for the Design of Materials Accounting for the Process-Structure-Property- Performance (PSPP) Relationship". W Integrated Computational Materials Engineering (ICME) for Metals, 539–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119018377.ch16.
Pełny tekst źródłaLiu, Xiangkun, Chongxu Zhou, Dehua Hu i Wei Zhang. "Research on High-Performance Concrete for Volute Region of PX Combined Pump Room in Hualong Nuclear Power Plant". W Springer Proceedings in Physics, 503–10. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_44.
Pełny tekst źródłaOlson, G. B. "Structure/Property Relationships in High-Strength Steels". W Materials Characterization for Systems Performance and Reliability, 109–26. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2119-4_6.
Pełny tekst źródłaHan, Shengli, Liqun Cui i Daren Li. "W–Cu Tube Processing and Structure Property by Powder Extrusion Molding". W High Performance Structural Materials, 1003–10. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0104-9_105.
Pełny tekst źródłaAl-Haddad, Diala Basim, Gul Ahmed Jokhio i Abid Abu Tair. "Overview of Concrete Deterioration Due to Sulphate Attack and Comparison of Its Requirements in International Codes". W Lecture Notes in Civil Engineering, 199–210. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27462-6_19.
Pełny tekst źródłaEdie, D. D. "Carbon Fiber Processing and Structure/Property Relations". W Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance, 163–81. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1013-9_9.
Pełny tekst źródłaHuang, Chien Jung, Kuo Chien Liao i Yan Kuin Su. "Structure Property of Titanium Dioxide Thin Films in Sintered Temperature by the Sol-Gel Method". W High-Performance Ceramics V, 1465–67. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1465.
Pełny tekst źródłaStreszczenia konferencji na temat "STRUCTURE-PROPERTY-PERFORMANCE"
Díaz-Marín, Carlos, Gustav Graeber, Yang Zhong, Leon Gaugler, Miles Roper, Kezia Hector, Xinyue Liu, Bachir El Fil i Gang Chen. "Structure-Property Relationships of Hydrogel-Salt Composites for Extreme Sorption Performance". W Microflows and Interfacial Phenomena, Evanston, Illinois, 19-21 June. US DOE, 2023. http://dx.doi.org/10.2172/1986185.
Pełny tekst źródła"The effects of management structure on the performance of listed property trusts". W 11th European Real Estate Society Conference: ERES Conference 2004. ERES, 2004. http://dx.doi.org/10.15396/eres2004_217.
Pełny tekst źródłaNelson, Jenny. "Luminescence and molecular modelling as tools to probe structure-property-performance relationships at molecular heterojunctions". W International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.191.
Pełny tekst źródłaSuda, Mitsunori, Takanori Kitamura, Ratchaneekorn Wongpajan i Zhiyuan Zhang. "Effect of Paper Property on Mechanical Property of Paper Tube". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51392.
Pełny tekst źródłaMolina-Luna, Leopoldo. "Insights into structure-property-performance correlations in functional materials: from MEMS-based in-situ/operando (S)TEM to Machine Learning". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1460.
Pełny tekst źródłaBuchanan, Larry P. "Evaluation of Fire Protection Piping in a DOE Performance Category 3 Structure". W ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77125.
Pełny tekst źródłaShiomi, Kensuke. "Seismic Performance Evaluation for Steel-Frame-Structure Considering Member Fracture". W ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65673.
Pełny tekst źródłaLuo, Zhixing, Yunlin Sun, Peng Liu i Junfan Lu. "Application of New Timber Structure Building Envelope in China’s Solar Buildings". W ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18312.
Pełny tekst źródłaByam, Brooks P., i Clark J. Radcliffe. "Modular Modeling of Engineering Systems Using Fixed Input-Output Structure". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0073.
Pełny tekst źródłaSullivan, Anthony, Anil Saigal i Michael A. Zimmerman. "Structure-Property Relationships Between Morphological Anisotropy and Mechanical, Thermal, and Dielectric Behavior in Liquid Crystal Polymers". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11608.
Pełny tekst źródłaRaporty organizacyjne na temat "STRUCTURE-PROPERTY-PERFORMANCE"
Peles, Amra, Scott Whalen i Glenn Grant. Sparse Data Machine Learning Integration with Theory, Experiment and Uncertainty Quantification: Process-Structure-Property-Performance of Friction Deformation Processing. Office of Scientific and Technical Information (OSTI), maj 2022. http://dx.doi.org/10.2172/1985698.
Pełny tekst źródłaPisani, William, Dane Wedgeworth, Michael Roth, John Newman i Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), marzec 2023. http://dx.doi.org/10.21079/11681/46713.
Pełny tekst źródłaWorkman, Austin, i Jay Clausen. Meteorological property and temporal variable effect on spatial semivariance of infrared thermography of soil surfaces for detection of foreign objects. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/41024.
Pełny tekst źródłaAPPLICATION RESEARCH OF V CONTAINING HIGH STRENGTH WEATHERING STEEL IN STEEL STRUCTURE BUILDING. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.090.
Pełny tekst źródła