Gotowa bibliografia na temat „Structure fine de l’exciton”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structure fine de l’exciton”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Structure fine de l’exciton"
Shiner, D. L., i R. Dixson. "Measuring the fine structure constant using helium fine structure". IEEE Transactions on Instrumentation and Measurement 44, nr 2 (kwiecień 1995): 518–21. http://dx.doi.org/10.1109/19.377896.
Pełny tekst źródłaBlair, David F. "Fine Structure of a Fine Machine". Journal of Bacteriology 188, nr 20 (1.10.2006): 7033–35. http://dx.doi.org/10.1128/jb.01016-06.
Pełny tekst źródłaForbes, Richard. "Redefining fine-structure". Physics World 19, nr 11 (listopad 2006): 19. http://dx.doi.org/10.1088/2058-7058/19/11/30.
Pełny tekst źródłaHowell, Kathryn E. "Fine Structure Immunocytochemistry". Trends in Cell Biology 4, nr 1 (styczeń 1994): 30. http://dx.doi.org/10.1016/0962-8924(94)90037-x.
Pełny tekst źródłaSongaila, Antoinette, i Lennox L. Cowie. "Fine-structure variable?" Nature 398, nr 6729 (kwiecień 1999): 667–68. http://dx.doi.org/10.1038/19426.
Pełny tekst źródłaToth, K. S., P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, K. Vierinen, M. O. Kortelahti i F. T. Avignone. "Fine structure inTm153αdecay". Physical Review C 38, nr 4 (1.10.1988): 1932–35. http://dx.doi.org/10.1103/physrevc.38.1932.
Pełny tekst źródłaZirker, J. B., i S. Koutchmy. "Prominence fine structure". Solar Physics 127, nr 1 (maj 1990): 109–18. http://dx.doi.org/10.1007/bf00158516.
Pełny tekst źródłaDrake, G. WF. "Progress in helium fine-structure calculations and the fine-structure constant". Canadian Journal of Physics 80, nr 11 (1.11.2002): 1195–212. http://dx.doi.org/10.1139/p02-111.
Pełny tekst źródłaFriedman, Sy D. "Coding without fine structure". Journal of Symbolic Logic 62, nr 3 (wrzesień 1997): 808–15. http://dx.doi.org/10.2307/2275573.
Pełny tekst źródłaGibert, A., i F. Bastien. "Fine structure of streamers". Journal of Physics D: Applied Physics 22, nr 8 (14.08.1989): 1078–82. http://dx.doi.org/10.1088/0022-3727/22/8/011.
Pełny tekst źródłaRozprawy doktorskie na temat "Structure fine de l’exciton"
Prin, Elise. "Propriétés optiques fondamentales de nanocristaux de semi-conducteurs individuels aux températures cryogéniques". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0182.
Pełny tekst źródłaSemiconductor nanocrystals exhibit outstanding optical and electronic properties due to the quantum confinement of their charge carriers, making them valuable for various applications in optoelectronics, light-emitting devices, and spin-based technologies. Understanding the physics of the band-edge exciton, whose recombination is at the origin of their photoluminescence, is crucial for developing these applications. This thesis focuses on the experimental study of the optical properties of indium phosphide and lead halide perovskites nanocrystals. Using magneto-photoluminescence spectroscopy onsingle nanocrystals at low temperatures, we reveal spectral fingerprints highly sensitive to nanocrystal morphologies and elucidate the entire band-edge exciton fine structure and charge-complex binding energies. In InP/ZnS/ZnSe nanocrystals, the evolution of photoluminescence spectra and decays under magnetic fields show evidence for a ground dark exciton level lying less than a millielectronvolt below the bright exciton triplet, findings supported by a model accounting for the shape anisotropy of the InPcore. In lead halide perovskites, we demonstrate that the ground exciton state is dark and lies several millielectronvolts below the lowest bright exciton sublevels, settling the debate on the bright-dark exciton level ordering in these materials. Combining our results with spectroscopic measurements on various perovskite nanocrystal compounds, we establish universal scaling laws relating exciton fine structure splitting, trion and biexciton binding energies to the band-edge exciton energy in lead-halide perovskitenanostructures, regardless of their chemical composition. Lastly, preliminary spectroscopy analyses on perovskite nanorods with a high aspect ratio suggest their potential as candidates for quantum light emitters due to their characteristic single emission line
Smiciklas, Marc. "A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure". Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc31547/.
Pełny tekst źródłaJohnson, Colin Terence. "Fine structure transitions in astrophysics". Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317096.
Pełny tekst źródłaTurnbull, Alexander James. "Fine structure in elliptical galaxies". Thesis, University of Hertfordshire, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323441.
Pełny tekst źródłaJankowski, Charles Robert. "Fine structure features for speaker identification". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/11012.
Pełny tekst źródłaIncludes bibliographical references (p. 193-198).
by Charles Robert Jankowski, Jr.
Ph.D.
Tovena, Lucia M. "The fine structure of polarity sensitivity /". New York ; London : Garland, 1998. http://catalogue.bnf.fr/ark:/12148/cb37081866c.
Pełny tekst źródłaGivors, Fabien. "Vers une structure fine des calculabilités". Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20160/document.
Pełny tekst źródłaComputability is centered on computable functions, as defined by Church, Kleene,Rosser and Turing in the twentieth century. Initially focused on integers,computability has been generalised to sets, in particular thanks toKripke-Platek's Axiomatic Set Theory.In this thesis, we define a general notion of computability,sub-computabilities, whose axioms are satisfied by numerous recursive fragmentsof classical computability, and also by higher-order computabilities overadmissible sets. We show how in sub-computabilities, containing an enumeration oftotal functions and an enumeration of partial functions, classical theoremssuch as Myhill and Rogers isomorphisms, s-m-n theorem, Kleene's fixed-point orRice's theorem hold in a slightly different way, even if a large part ofthe objects of computability are missing. Along with each of thesesub-computabilities and their different notions of recursivity comes a structureof degrees (with intermediate, high and low degrees, etc.), refining theclassical one, our notions of recursivity being stronger.Moreover, we show how admissible computability can be interpreted through theformalism of sub-computabilities. In particular, the enumerations ofalpha-finite and alpha-enumerable sets present in this setting allowsome interesting results to be carried from one model to the other
ISHIHARA, TAKASHI, i YUKIO KANEDA. "Fine-scale structure of thin vortical layers". Cambridge University Press, 1998. http://hdl.handle.net/2237/10287.
Pełny tekst źródłaMacindoe, Owen. "Investigating the fine grained structure of networks". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60103.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 107-109).
In this thesis I explore a novel representation for characterizing a graph's fine grained structure. The key idea is that this structure can be represented as a distribution of the structural features of subgraphs. I introduce a set of such structural features and use them to compute representations for a variety of graphs, demonstrating their use in qualitatively describing fine structure. I then demonstrate the utility of this representation with quantitative techniques for computing graph similarity and graph clustering. I show that similarity judged using this representation is significantly different from judgements using full graph structural measures. I find that graphs from the same class of networks, such as email correspondence graphs, can differ significantly in their fine structure across the institutions whose relations they model, but also find examples of graphs from the same institutions across different time periods that share a similar fine structure.
by Owen Macindoe.
S.M.
Kane, Frances. "The fine structure of the Irish NP". Thesis, Ulster University, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675469.
Pełny tekst źródłaKsiążki na temat "Structure fine de l’exciton"
Griffiths, Gareth. Fine Structure Immunocytochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1.
Pełny tekst źródłaGriffiths, Gareth. Fine structure immunocytochemistry. Berlin: Springer-Verlag, 1993.
Znajdź pełny tekst źródłaMitchell, William J., i John R. Steel. Fine Structure and Iteration Trees. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-21903-4.
Pełny tekst źródła1948-, Steel J. R., red. Fine structure and iteration trees. Berlin: Springer-Verlag, 1994.
Znajdź pełny tekst źródła1952-, Hasnain S. S., red. X-ray absorption fine structure. New York: E. Horwood, 1991.
Znajdź pełny tekst źródłaChernov, Gennady P. Fine Structure of Solar Radio Bursts. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20015-1.
Pełny tekst źródłaservice), SpringerLink (Online, red. Fine Structure of Solar Radio Bursts. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaSchwabe, Christian, i Erika E. Büllesbach. Relaxin and the Fine Structure of Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-12909-8.
Pełny tekst źródłaL, Palay Sanford, Webster Henry D i Peters Alan 1929-, red. The fine structure of the nervous system =: The fine structure of the nervous system : neurons and their supporting cells. Wyd. 3. New York: Oxford University Press, 1991.
Znajdź pełny tekst źródłaRabah, Samar O. The fine structure of muscle in development of salmon. Birmingham: University of Birmingham, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Structure fine de l’exciton"
Mitchell, William J., i John R. Steel. "Fine Structure". W Fine Structure and Iteration Trees, 10–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-21903-4_3.
Pełny tekst źródłaGooch, Jan W. "Fine Structure". W Encyclopedic Dictionary of Polymers, 305. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4955.
Pełny tekst źródłaSchindler, Ralf, i Martin Zeman. "Fine Structure". W Handbook of Set Theory, 605–56. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_10.
Pełny tekst źródłaAthay, R. G. "Chromospheric Fine Structure". W Physics of the Sun, 51–69. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9636-2_2.
Pełny tekst źródłaKragh, Helge. "Fine-Structure Constant". W Compendium of Quantum Physics, 239–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_73.
Pełny tekst źródłaWelch, Philip D. "Σ* Fine Structure". W Handbook of Set Theory, 657–736. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_11.
Pełny tekst źródłaGriffiths, Gareth. "Fine-Structure Preservation". W Fine Structure Immunocytochemistry, 9–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_2.
Pełny tekst źródłaGriffiths, Gareth. "Introduction to Immunocytochemistry and Historical Background". W Fine Structure Immunocytochemistry, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_1.
Pełny tekst źródłaGriffiths, Gareth. "Preembedding Immuno-Labelling". W Fine Structure Immunocytochemistry, 345–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_10.
Pełny tekst źródłaGriffiths, Gareth. "Quantitative Aspects of Immunocytochemistry". W Fine Structure Immunocytochemistry, 371–445. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Structure fine de l’exciton"
Hinder, Fabian, Valerie Vaquet i Barbara Hammer. "On the Fine Structure of Drifting Features". W ESANN 2024, 63–68. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-89.
Pełny tekst źródłaPage, R. D., R. G. Allatt, T. Enqvist, K. Eskola, P. T. Greenlees, P. Jones, R. Julin, P. Kuusiniemi, M. Leino i J. Uusitalo. "Fine structure in". W EXOTIC NUCLEI AND ATOMIC MASSES. ASCE, 1998. http://dx.doi.org/10.1063/1.57349.
Pełny tekst źródłaRykaczewski, K. P. "Fine structure in proton emission". W MAPPING THE TRIANGLE: International Conference on Nuclear Structure. AIP, 2002. http://dx.doi.org/10.1063/1.1517954.
Pełny tekst źródłaMacindoe, Owen, i Whitman Richards. "Graph Comparison Using Fine Structure Analysis". W 2010 IEEE Second International Conference on Social Computing (SocialCom). IEEE, 2010. http://dx.doi.org/10.1109/socialcom.2010.35.
Pełny tekst źródłaWang, Hailing, Jens-Uwe Grabow, Richard Mawhorter i Timothy Steimle. "FINE AND HYPERFINE STRUCTURE OF 173YbF". W 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.te07.
Pełny tekst źródłaSonzogni, A. A. "Fine structure in deformed proton emitters". W International symposium on proton-emitting nuclei (PROCON99). AIP, 2000. http://dx.doi.org/10.1063/1.1305998.
Pełny tekst źródłaVesely, S. L., A. A. Vesely i S. R. Dolci. "The Fine Structure Constant and Graphene". W 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017668.
Pełny tekst źródłaUshenko, Alexander G., i Serhiy B. Yermolenko. "Fine polarization structure of laser speckles". W Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, redaktorzy Maksymilian Pluta i Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171880.
Pełny tekst źródłaCrescenzi, Valter, Paolo Merialdo i Paolo Missier. "Fine-grain web site structure discovery". W the fifth ACM international workshop. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956699.956703.
Pełny tekst źródłaSimberová, Stanislava, Michal Haindl i Filip Sroubek. "Fine Structure Recognition in Multichannel Observations". W 2012 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2012. http://dx.doi.org/10.1109/dicta.2012.6411740.
Pełny tekst źródłaRaporty organizacyjne na temat "Structure fine de l’exciton"
Barton, J. J. Angle-resolved photoemission extended fine structure. Office of Scientific and Technical Information (OSTI), marzec 1985. http://dx.doi.org/10.2172/5860703.
Pełny tekst źródłaLestone, John Paul. QED Based Calculation of the Fine Structure Constant. Office of Scientific and Technical Information (OSTI), październik 2016. http://dx.doi.org/10.2172/1330056.
Pełny tekst źródłaRefaie, A. I. Fine structure calculations of atomic data for Ar XVI. Redaktorzy Lotfia Elnai i Ramy Mawad. Journal of Modern trends in physics research, grudzień 2014. http://dx.doi.org/10.19138/mtpr/(14)1-15.
Pełny tekst źródłaRefaie, A. I., i Ramy Mawad. Fine structure calculations of atomic data for Ar XVI. Redaktor Lotfia Elnai. Journal of Modern trends in physics research, grudzień 2014. http://dx.doi.org/10.19138/mtpr/(14)16-25.
Pełny tekst źródłaZheng, Y., [Lawrence Berkeley Lab., CA (United States)] i D. A. Shirley. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure. Office of Scientific and Technical Information (OSTI), luty 1995. http://dx.doi.org/10.2172/88786.
Pełny tekst źródłaToole, John M., i Raymond W. Schmitt. Analysis of Fine Structure and Microstructure Data from Fieberling Guyot. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1997. http://dx.doi.org/10.21236/ada324305.
Pełny tekst źródłaSobotka, M., P. N. Brandt i G. W. Simon. Fine Structure in Sunspots: Sizes, Lifetimes, Motions and Temporal Variations. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1997. http://dx.doi.org/10.21236/ada334909.
Pełny tekst źródłaLestone, John Paul. Possible reason for the numerical value of the fine-structure constant. Office of Scientific and Technical Information (OSTI), luty 2018. http://dx.doi.org/10.2172/1423965.
Pełny tekst źródłaAntonio, M. R., L. Soderholm i I. Song. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure. Office of Scientific and Technical Information (OSTI), czerwiec 1995. http://dx.doi.org/10.2172/515522.
Pełny tekst źródłaMiller, Wooddy, i Wooddy S. Miller. Temperature Dependent Rubidium Helium Line Shapes and Fine Structure Mixing Rates. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2015. http://dx.doi.org/10.21236/ad1003086.
Pełny tekst źródła