Gotowa bibliografia na temat „Structural optimization”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structural optimization”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Structural optimization"

1

S, Nakkeeran. "Structural Optimization of Automotive Chassis". International Journal of Psychosocial Rehabilitation 23, nr 4 (20.07.2019): 18–23. http://dx.doi.org/10.37200/ijpr/v23i4/pr190155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yanev, Bojidar. "Structural optimization". Structure and Infrastructure Engineering 7, nr 6 (czerwiec 2011): 453–54. http://dx.doi.org/10.1080/15732479.2010.532634.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

SEGUCHI, Yasuyuki. "Structural Optimization". Journal of the Society of Mechanical Engineers 92, nr 847 (1989): 485–91. http://dx.doi.org/10.1299/jsmemag.92.847_485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

A. Mota Soares, Carlos, Martin P. Bendsoe, Kyung K. Choi i José Herskovits. "Structural optimization". Computers & Structures 86, nr 13-14 (lipiec 2008): 1385. http://dx.doi.org/10.1016/j.compstruc.2007.05.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nowak, M. "Improved aeroelastic design through structural optimization". Bulletin of the Polish Academy of Sciences: Technical Sciences 60, nr 2 (1.10.2012): 237–40. http://dx.doi.org/10.2478/v10175-012-0031-8.

Pełny tekst źródła
Streszczenie:
Abstract. The paper presents the idea of coupled multiphysics computations. It shows the concept and presents some preliminary results of static coupling of structural and fluid flow codes as well as biomimetic structural optimization. The model for the biomimetic optimization procedure was the biological phenomenon of trabecular bone functional adaptation. Thus, the presented structural bio-inspired optimization system is based on the principle of constant strain energy density on the surface of the structure. When the aeroelastic reactions are considered, such approach allows fulfilling the mechanical theorem for the stiffest design, comprising the optimizations of size, shape and topology of the internal structure of the wing.
Style APA, Harvard, Vancouver, ISO itp.
6

Enomoto, Hirohisa, i Shigeru Sakamoto. "Structural Optimization System". Journal of the Acoustical Society of America 129, nr 3 (2011): 1666. http://dx.doi.org/10.1121/1.3573317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Liang, Qing Quan. "Structural Design Optimization". Advances in Structural Engineering 10, nr 6 (grudzień 2007): i—ii. http://dx.doi.org/10.1260/136943307783571463.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gutkowski, Witold, Jacek Bauer i Zdzisław Iwanow. "Discrete structural optimization". Computer Methods in Applied Mechanics and Engineering 51, nr 1-3 (wrzesień 1985): 71–78. http://dx.doi.org/10.1016/0045-7825(85)90028-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Frangopol, Dan M. "Probabilistic structural optimization". Progress in Structural Engineering and Materials 1, nr 2 (styczeń 1998): 223–30. http://dx.doi.org/10.1002/pse.2260010216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Marti, Kurt. "Structural reliability and stochastic structural optimization". Mathematical Methods of Operations Research 46, nr 3 (październik 1997): 285–86. http://dx.doi.org/10.1007/bf01194857.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Structural optimization"

1

Sibai, Munira. "Optimization of an Unfurlable Space Structure". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99908.

Pełny tekst źródła
Streszczenie:
Deployable structures serve a large number of space missions. They are vital since spacecraft are launched by placing them inside launch vehicle payload fairings of limited volume. Traditional spacecraft design often involves large components. These components could have power, communication, or optics applications and include booms, masts, antennas, and solar arrays. Different stowing methods are used in order to reduce the overall size of a spacecraft. Some examples of stowing methods include simple articulating, more complex origami inspired folding, telescoping, and rolling or wrapping. Wrapping of a flexible component could reduce the weight by eliminating joints and other components needed to enable some of the other mechanisms. It also is one of the most effective methods at reducing the compaction volume of the stowed deployable. In this study, a generic unfurlable structure is optimized for maximum natural frequency at its fully deployed configuration and minimal strain energy in its stowed configuration. The optimized stowed structure is then deployed in simulation. The structure consists of a rectangular panel that tightly wraps around a central cylindrical hub for release in space. It is desired to minimize elastic energy in the fully wrapped panel and hinge to ensure minimum reaction load into the spacecraft as it deploys in space, since that elastic energy stored at the stowed position transforms into kinetic energy when the panel is released and induces a moment in the connected spacecraft. It is also desired to maximize the fundamental frequency of the released panel as a surrogate for the panel having sufficient stiffness. Deployment dynamic analysis of the finite element model was run to ensure satisfactory optimization formulation and results.
Master of Science
Spacecraft, or artificial satellites, do not fly from earth to space on their own. They are launched into their orbits by placing them inside launch vehicles, also known as carrier rockets. Some parts or components of spacecraft are large and cannot fit in their designated space inside launch vehicles without being stowed into smaller volumes first. Examples of large components on spacecraft include solar arrays, which provide power to the spacecraft, and antennas, which are used on satellite for communication purposes. Many methods have been developed to stow such large components. Many of these methods involve folding about joints or hinges, whether it is done in a simple manner or by more complex designs. Moreover, components that are flexible enough could be rolled or wrapped before they are placed in launch vehicles. This method reduces the mass which the launch vehicle needs to carry, since added mass of joints is eliminated. Low mass is always desirable in space applications. Furthermore, wrapping is very effective at minimizing the volume of a component. These structures store energy inside them as they are wrapped due to the stiffness of their materials. This behavior is identical to that observed in a deformed spring. When the structures are released in space, that energy is released, and thus, they deploy and try to return to their original form. This is due to inertia, where the stored strain energy turns into kinetic energy as the structure deploys. The physical analysis of these structures, which enables their design, is complex and requires computational solutions and numerical modeling. The best design for a given problem can be found through numerical optimization. Numerical optimization uses mathematical approximations and computer programming to give the values of design parameters that would result in the best design based on specified criterion and goals. In this thesis, numerical optimization was conducted for a simple unfurlable structure. The structure consists of a thin rectangular panel that wraps tightly around a central cylinder. The cylinder and panel are connected with a hinge that is a rotational spring with some stiffness. The optimization was solved to obtain the best values for the stiffness of the hinge, the thickness of the panel, which is allowed to vary along its length, and the stiffness or elasticity of the panel's material. The goals or objective of the optimization was to ensure that the deployed panel meets stiffness requirement specified for similar space components. Those requirements are set to make certain that the spacecraft can be controlled from earth even with its large component deployed. Additionally, the second goal of the optimization was to guarantee that the unfurling panel does not have very high energy stored while it's wrapped, so that it would not cause large motion the connected spacecraft in the zero gravity environments of space. A computer simulation was run with the resulting hinge stiffness and panel elasticity and thickness values with the cylinder and four panels connected to a structure representing a spacecraft. The simulation results and deployment animation were assessed to confirm that desired results were achieved.
Style APA, Harvard, Vancouver, ISO itp.
2

Denli, Huseyin. "Structural-acoustic optimization of composite sandwich structures". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 168 p, 2007. http://proquest.umi.com/pqdlink?did=1251904511&Fmt=7&clientId=79356&RQT=309&VName=PQD.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Peters, David W. "Design of diffractive optical elements through low-dimensional optimization". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/54614.

Pełny tekst źródła
Streszczenie:
The simulation of diffractive optical structures allows for the efficient testing of a large number of structures without having to actually fabricate these devices. Various forms of analysis of these structures have been done through computer programs in the past. However, programs that can actually design a structure to perform a given task are very limited in scope. Optimization of a structure can be a task that is very processor time intensive, particularly if the optimization space has many dimensions. This thesis describes the creation of a computer program that is able to find an optimal structure while maintaining a low-dimensional search space, thus greatly reducing the processor time required to find the solution. The program can design the optimal structure for a wide variety of planar optical devices that conform to the weakly-guiding approximation with an efficient code that incorporates the low-dimensional search space concept. This work is the first use of an electromagnetic field solver inside of an optimization loop for the design of an optimized diffractive-optic structure.
Style APA, Harvard, Vancouver, ISO itp.
4

Panayirci, Huseyin Murat. "Structural Optimization Using Ansys". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607075/index.pdf.

Pełny tekst źródła
Streszczenie:
This study describes the process of performing structural optimization using ANSYS. In the first part, the general concepts in optimization and optimization algorithms for different type of optimization problems are covered. Also finite element method is introduced briefly in this part. In the second part, important definitions in structural optimization are mentioned. Then the optimization methods available in ANSYS are explained with their theories. Necessary steps to perform optimization with ANSYS are described at the end of this part. In the next part, sample problems found from scientific papers are solved using ANSYS and the results are compared. At the end of the study, the results obtained from the example problems are discussed whether they came out as expected or not. Also conclusions are made about solving optimization problems and performing structural optimization with ANSYS.
Style APA, Harvard, Vancouver, ISO itp.
5

Schmidt, Martin-Pierre. "Computational generation and optimization of mechanical structures On structural topology optimization using graded porosity control Structural topology optimization with smoothly varying fiber orientations". Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR01.

Pełny tekst źródła
Streszczenie:
Cette thèse étudie et développe des méthodes de modélisation mathématique, analyse et optimisation numérique appliquées à la génération d’objets 3D. Les approches proposées sont utilisées pour la génération de structures lattices et de structure continue par optimisation topologique
This thesis studies and develops methods for mathematical modeling, numerical analysis and optimization applied to the generation of 3D objects. The proposed approaches are used to generate lattice structures and continuum structures with topology optimization
Style APA, Harvard, Vancouver, ISO itp.
6

Mahfouz, S. Y. "Design optimization of structural steelwork". Thesis, University of Bradford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534650.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hassani, B. "Homogenization and topological structural optimization". Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Clune, Rory P. (Rory Patrick). "Algorithm selection in structural optimization". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82832.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 153-162).
Structural optimization is largely unused as a practical design tool, despite an extensive academic literature which demonstrates its potential to dramatically improve design processes and outcomes. Many factors inhibit optimization's application. Among them is the requirement for engineers-who generally lack the requisite expertise-to choose an optimization algorithm for a given problem. A suitable choice of algorithm improves the resulting design and reduces computational cost, yet the field of optimization does little to guide engineers in selecting from an overwhelming number of options. The goal of this dissertation is to aid, and ultimately to automate, algorithm selection, thus enhancing optimization's applicability in real-world design. The initial chapters examine the extent of the problem by reviewing relevant literature and by performing a short, empirical study of algorithm performance variation. We then specify hundreds of bridge design problems by methodically varying problem characteristics, and solve each of them with eight commonly-used nonlinear optimization algorithms. The resulting, extensive data set is used to address the algorithm selection problem. The results are first interpreted from an engineering perspective to ensure their validity as solutions to realistic problems. Algorithm performance trends are then analyzed, showing that no single algorithm outperforms the others on every problem. Those that achieve the best solutions are often computationally expensive, and those that converge quickly often arrive at poor solutions. Some problem features, such as the numbers of design variables and constraints, the structural type, and the nature of the objective function, correlate with algorithm performance. This knowledge and the generated data set are then used to develop techniques for automatic selection of optimization algorithms, based on a range supervised learning methods. Compared to a set of current, manual selection strategies, these techniques select the best algorithm almost twice as often, lead to better-quality solutions and reduced computational cost, and-on a randomly-chosen set of mass minimization problems-reduce average material use by 9.4%. The dissertation concludes by outlining future research on algorithm selection, on integrating these techniques in design software, and on adapting structural optimization to the realities of design. Keywords: Algorithm selection, structural optimization, structural design, machine learning
by Rory Clune.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
9

Debenham, Shaun T. (Shaun Todd) 1973. "Optimization of outrigger structural systems". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/80923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tayar, Memduh Ali. "Design approaches to structural optimization". Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/78067.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1986.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.
Includes bibliographical references (leaves 84-86).
The objective of this thesis is to develop design approaches to structural optimization. In the example of three-dimensional grid structures, widely known as 'space frames', possible configurations are explored which maximize the load-bearing capacity of the system in relation to its weight. The study has been organized in two chapters: The first chapter starts with a brief review of structural concepts. Along with Gothic as a historical example to optimization, modem analytical methods to optimal structural design are presented which include Maxwell's Lemma, Michell's Fields and Ultimate Strength Analysis. In the second part of the thesis the design solutions are presented. The emphasis lies on a deployable space frame which is based on bar-joist like elements.
by Memduh Ali Tayar.
M.S.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Structural optimization"

1

MacBain, Keith M., i William R. Spillers. Structural Optimization. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-95865-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Save, M., W. Prager i W. H. Warner, red. Structural Optimization. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-7921-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rozvany, G. I. N., i B. L. Karihaloo, red. Structural Optimization. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kirsch, Uri. Structural Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84845-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

MacBain, Keith M. Structural Optimization. Boston, MA: Springer-Verlag US, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

M, Save, Prager William 1903-1980, Sacchi G i Warner William H. 1929-, red. Structural optimization. New York: Plenum Press, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gutkowski, Witold, i Jacek Bauer, red. Discrete Structural Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85095-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gutkowski, W., red. Discrete Structural Optimization. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2754-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Xie, Y. M., i G. P. Steven. Evolutionary Structural Optimization. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0985-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Xie, Y. M. Evolutionary Structural Optimization. London: Springer London, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Structural optimization"

1

Kirsch, Uri. "Optimization Methods". W Structural Optimization, 57–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84845-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Spillers, William R., i Keith M. MacBain. "Multicriteria Optimization". W Structural Optimization, 175–78. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-95865-1_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kirsch, Uri. "Problem Statement". W Structural Optimization, 1–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84845-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kirsch, Uri. "Approximation Concepts". W Structural Optimization, 125–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84845-2_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kirsch, Uri. "Design Procedures". W Structural Optimization, 179–291. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84845-2_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Anderson, Melvin S. "Practical Design of Shear and Compression Loaded Stiffened Panels". W Structural Optimization, 1–8. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

de Boer, R. "Optimization of Vibrating Thin-Walled Structures". W Structural Optimization, 69–76. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ellyin, Fernand. "Shape Optimization of Intersecting Pressure Vessels". W Structural Optimization, 77–84. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Eschenauer, H. A., i P. U. Post. "Optimization Procedure S A P 0 P Applied to Optimal Layouts of Complex Structures". W Structural Optimization, 85–92. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Esping, B., i D. Holm. "Structural Shape Optimization Using OASIS". W Structural Optimization, 93–100. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Structural optimization"

1

SOBIESZCZANSKI-SOBIESKI, J., B. JAMES i M. RILEY. "Structural optimization by generalized, multilevel optimization". W 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-697.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

BENNETT, J., i R. LUST. "Conservative methods for structural optimization". W 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

VANDERPLAATS, G., H. MIURA, H. CAI i S. HANSEN. "Structural optimization using synthetic functions". W 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1222.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

GRANDHI, R., i V. VENKAYYA. "Structural optimization with frequency constraints". W 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-787.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

THANEDAR, PRAMOD, i SRINIVAS KODIYALAM. "Structural optimization using probabilistic constraints". W 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

HAFTKA, R., i R. GRANDHI. "Structural shape optimization - A survey". W 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-772.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

BES, CH, i J. LOCATELLI. "Structural optimization at Aerospatiale Aircraft". W 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mogami, Katsuya, Shinji Nishiwaki, Kazuhiro Izui, Masataka Yoshimura i Tsuyoshi Nomura. "Structural Optimization for the Design of Band-Gap Structures Using Discrete Structural Elements". W 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yu, Xiaoye, i Tianjian Ji. "Searching Efficient Structural Forms: Evolutionary Structural Optimization Vs Structural Concepts". W The Seventh International Structural Engineering and Construction Conference. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5354-2_st-163-487.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Choi, Kwong-Kit, Chung-Hsiang Lin, Kok-Ming Leung i Theodor Tamir. "QWIP structural optimization". W International Symposium on Optical Science and Technology, redaktorzy Randolph E. Longshore i Sivalingam Sivananthan. SPIE, 2002. http://dx.doi.org/10.1117/12.453827.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Structural optimization"

1

Lenee-Bluhm, Pukha. Structural Optimization Final Technical Report. Office of Scientific and Technical Information (OSTI), sierpień 2020. http://dx.doi.org/10.2172/1737349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Flynn, Eric B. Design Optimization of Structural Health Monitoring Systems. Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1122908.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Park, Gyung-Jin. Structural Optimization Using the Equivalent Load Concept. Fort Belvoir, VA: Defense Technical Information Center, listopad 2005. http://dx.doi.org/10.21236/ada451871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Voon, B. K., i M. A. Austin. Structural Optimization in a Distributed Computing Environment. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada454846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Moon, Young I. Geodesic Wing Structural Optimization and Dynamic Analysis. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1996. http://dx.doi.org/10.21236/ada361169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Striz, Alfred G. Influence of Structural and Aerodynamic Modeling on Flutter Analysis and Structural Optimization. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1991. http://dx.doi.org/10.21236/ada248487.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Aksay, I. A. Structural Hierarchy in Materials: Processing and Property Optimization. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1995. http://dx.doi.org/10.21236/ada371474.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kohn, Robert V. Optimization of Structural Topology in the High-Porosity Regime. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2004. http://dx.doi.org/10.21236/ada425439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Johnson, E. H., i D. J. Neill. Automated Structural Optimization System (ASTROS). Volume 3. Applications Manual. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1988. http://dx.doi.org/10.21236/adb130470.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Plemmons, Robert J. Fast Algorithms for Structural Optimization, Least Squares and Related Computations. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1988. http://dx.doi.org/10.21236/ada205047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii