Gotowa bibliografia na temat „Structural Modeling - Heme Enzymes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structural Modeling - Heme Enzymes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Structural Modeling - Heme Enzymes"
Jóźwik, Ilona K., Martin Litzenburger, Yogan Khatri, Alexander Schifrin, Marco Girhard, Vlada Urlacher, Andy-Mark W. H. Thunnissen i Rita Bernhardt. "Structural insights into oxidation of medium-chain fatty acids and flavanone by myxobacterial cytochrome P450 CYP267B1". Biochemical Journal 475, nr 17 (11.09.2018): 2801–17. http://dx.doi.org/10.1042/bcj20180402.
Pełny tekst źródłaRobins, Tiina, Jonas Carlsson, Maria Sunnerhagen, Anna Wedell i Bengt Persson. "Molecular Model of Human CYP21 Based on Mammalian CYP2C5: Structural Features Correlate with Clinical Severity of Mutations Causing Congenital Adrenal Hyperplasia". Molecular Endocrinology 20, nr 11 (1.11.2006): 2946–64. http://dx.doi.org/10.1210/me.2006-0172.
Pełny tekst źródłaSantana, Margarida, Manuela M. Pereira, Nuno P. Elias, Cláudio M. Soares i Miguel Teixeira. "Gene Cluster of Rhodothermus marinusHigh-Potential Iron-Sulfur Protein:Oxygen Oxidoreductase, acaa3-Type Oxidase Belonging to the Superfamily of Heme-Copper Oxidases". Journal of Bacteriology 183, nr 2 (15.01.2001): 687–99. http://dx.doi.org/10.1128/jb.183.2.687-699.2001.
Pełny tekst źródłaScaffa, Alejandro, George A. Tollefson, Hongwei Yao, Salu Rizal, Joselynn Wallace, Nathalie Oulhen, Jennifer F. Carr, Katy Hegarty, Alper Uzun i Phyllis A. Dennery. "Identification of Heme Oxygenase-1 as a Putative DNA-Binding Protein". Antioxidants 11, nr 11 (28.10.2022): 2135. http://dx.doi.org/10.3390/antiox11112135.
Pełny tekst źródłaTimmins, Amy, i Sam P. de Visser. "A Comparative Review on the Catalytic Mechanism of Nonheme Iron Hydroxylases and Halogenases". Catalysts 8, nr 8 (31.07.2018): 314. http://dx.doi.org/10.3390/catal8080314.
Pełny tekst źródłaJortzik, Esther, Kathleen Zocher, Antje Isernhagen, Boniface M. Mailu, Stefan Rahlfs, Giampietro Viola, Sergio Wittlin, Nicholas H. Hunt, Heiko Ihmels i Katja Becker. "Benzo[b]quinolizinium Derivatives Have a Strong Antimalarial Activity and Inhibit Indoleamine Dioxygenase". Antimicrobial Agents and Chemotherapy 60, nr 1 (12.10.2015): 115–25. http://dx.doi.org/10.1128/aac.01066-15.
Pełny tekst źródłaKrone, Nils, Yulia Grischuk, Marina Müller, Ruth Elisabeth Volk, Joachim Grötzinger, Paul-Martin Holterhus, Wolfgang G. Sippell i Felix G. Riepe. "Analyzing the Functional and Structural Consequences of Two Point Mutations (P94L and A368D) in the CYP11B1 Gene Causing Congenital Adrenal Hyperplasia Resulting from 11-Hydroxylase Deficiency". Journal of Clinical Endocrinology & Metabolism 91, nr 7 (1.07.2006): 2682–88. http://dx.doi.org/10.1210/jc.2006-0209.
Pełny tekst źródłaYadav, Rahul, i Emily E. Scott. "Endogenous insertion of non-native metalloporphyrins into human membrane cytochrome P450 enzymes". Journal of Biological Chemistry 293, nr 43 (14.09.2018): 16623–34. http://dx.doi.org/10.1074/jbc.ra118.005417.
Pełny tekst źródłaAfonso, S. G., R. Enriquez de Salamanca i A. M. Del C. Batlle. "Porphyrin-induced protein structural alterations of heme enzymes". International Journal of Biochemistry & Cell Biology 29, nr 8-9 (sierpień 1997): 1113–21. http://dx.doi.org/10.1016/s1357-2725(97)00045-9.
Pełny tekst źródłaShteinman, A. A. "Structural-functional modeling of non-heme oxygenases". Russian Chemical Bulletin 60, nr 7 (lipiec 2011): 1290–300. http://dx.doi.org/10.1007/s11172-011-0197-5.
Pełny tekst źródłaRozprawy doktorskie na temat "Structural Modeling - Heme Enzymes"
Acebes, Serrano Sandra. "Rational enzyme engineering of heme peroxidases through biophysical and biochemical modeling". Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/399735.
Pełny tekst źródłaLas enzimas son proteínas que catalizan reacciones bioquímicas y cuyo uso aporta múltiples ventajas, ya que son en general muy selectivas, poco contaminantes (biodegradables), baratas y permiten trabajar en condiciones suaves, en comparación con los procesos tradicionales no enzimáticos. A pesar de sus enormes beneficios, sus aplicaciones a nivel industrial son todavía limitadas, debido principalmente a la baja productividad, baja tolerancia al sustrato (demasiado específicos) y una escasa resistencia a las condiciones industriales en general, y por esta razón el desarrollo de enzimas mejoradas es un campo de investigación muy importante hoy en día. En particular, la aplicación de la química computacional en el campo de la ingeniería de enzimas está en aumento debido a las mejoras en hardware y software. Motivado por este progreso, el objetivo principal de esta tesis es el desarrollo de estrategias de cálculo que, mediante la combinación de diferentes metodologías in silico permitan diseñar y evaluar modificaciones en las enzimas, centrándonos en la obtención de resultados de forma rápida y económica. La primera parte de la tesis está centrada en la descripción del mecanismo enzimático entendido como un proceso de dos pasos que incluyen la difusión ligando y la reacción química, mediante una combinación de diferentes técnicas computacionales. El primer paso, que implica el reconocimiento de la proteína / ligando, se caracterizó con diferentes técnicas basadas en la mecánica molecular (dinámica molecular, docking y Monte Carlo- PELE). Por otro lado, la reacción química (incluyendo la formación de enlaces y la transferencia de electrones) se simuló usando métodos basados en mecánica cuántica por medio de cálculos de energía, la caracterización del spin o cálculos de acoplamiento electrónico. Por ejemplo, siguiendo este procedimiento, se caracterizó la oxidación de alcohol veratrílico por medio de la enzima lignin peroxidasa. Además, con el objetivo de poder calcular los acoplamientos electrónicos de una manera más rápida y fácil, se desarrolló un servidor web: ecoupling server. En la segunda parte de la tesis, los resultados demostraron que el protocolo anterior podría describir funciones enzimáticas no sólo en las especies nativas sino también en las variantes mutadas. Por ejemplo, se identificaron las implicaciones estructurales de la reactividad en una manganeso peroxidasa de la subfamilia larga y su variante modificada obtenida mediante la reducción de los últimos residuos terminales gracias al estudio de simulaciones de Monte Carlo (PELE) y cálculos de acoplamiento electrónico. Además, la resistencia a pH ácido en el mutante 2-1B (que se había obtenido previamente por evolución dirigida al azar) se comparó con la especie nativa y también se racionalizó por dinámica molecular, donde se observó que los residuos del entorno del hemo presentaban diferente conformación debido a las mutaciones introducidas, resultando en una diferente resistencia a pH ácido. La última parte de la tesis se centra en la ingeniería racional de hemo peroxidasas. A partir de predicciones in silico se diseñaron variantes de peroxidasa versátil para tratar de entender los procesos de transferencia electrónica de largo alcance que participan en la oxidación del sustrato de alcohol veratrílico, mediante la identificación de los residuos intermedios involucrados en el proceso. Además, a partir de un estudio computacional completo, se diseñó un mutante mejorado de manganeso peroxidasa, cuyos valores cinéticos estimados computacionalmente se encontraban de acuerdo con los resultados experimentales. En conclusión, en esta tesis se ilustra cómo los métodos biofísicos y bioquímicos computacionales son herramientas prometedoras y valiosas para la ingeniería de enzimas, en particular en el campo del diseño racional.
Lee, Dongwhan 1970. "Use of sterically hindered carboxylate ligands to model structural and functional features of dioxygen-activating centers in non-heme diiron enzymes". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8367.
Pełny tekst źródłaIncludes bibliographical references.
Chapter I. Modeling Dioxygen-Activating Centers in Non-Heme Diiron Enzymes: Carboxylate Shifts in Diiron(II) Complexes Supported by Sterically Hindered Carboxylate Ligands General synthetic routes are described for a series of diiron(II) complexes supported by sterically demanding carboxylate ligands 2,6-di(p-tolyl)benzoate (ArTolCO2-) and 2,6-di(4-fluorophenyl)benzoate (Ar4-FPhCO2-). The interlocking nature of the m-terphenyl units in self-assembled [Fe2(p-O2CArTol)2(O2CArTol)2L2] (L = C5H5N (4); 1-MeIm (5)) promotes the formation of coordination geometries analogous to those of the non-heme diiron cores in the enzymes RNR-R2 and A9D. Magnetic susceptibility and MOssbauer studies of 4 and 5 revealed properties consistent with weak antiferromagnetic coupling between the high-spin iron(II) centers. Structural studies of several derivatives obtained by ligand substitution reactions demonstrated that the [Fe2([mu]O2CAr')2L2] (Ar'=ArTol; Ar 4-FPh) module is geometrically quite flexible. Details of the core rearrangement within the tetracarboxylate diiron framework, facilitated by carboxylate shifts, were probed by solution VT 19F-NMR spectroscopic studies of [Fe2(ap-O2CAr4-FPh)2(O2CAr4-FPh)2(THF)2] (8) and [Fe2(p-O2CAr4-FPh)4(4-tBuC5H4N)2] (12). The dynamic motion in the primary coordination sphere controls the positioning of open sites and regulates the access of exogenous ligands, processes that also occur at the catalytic sites of non-heme diiron enzymes. Chapter II. Structural Flexibility within a Sterically Hindered Ligand Platform: Mononuclear Iron(II) Carboxylate Complexes as Subsite Models for Diiron(II) Centers The synthesis and characterization of a series of mononuclear iron(II) carboxylate complexes are described.
(cont.) By using sterically hindered carboxylate ligands, 2,6-di(p-tolyl)benzoate (ArTolCO2-) and 2,6-di(4-tert-butylphenyl)benzoate (Ar4-tBPhCO2-), series of four-, five-, and six-coordinate iron(II) complexes were synthesized. The compounds are [Fe(O2CArTol)2(1-BnIm)2] (3), [Fe(O2CArTol)2(1-MeBzIm)2] (4), [Fe(02C-Ar4-tBuPh)2(2,2'-bipy)2] (5), [Fe(O2CArTol)2(TMEDA)] (6), and [Fe(O2CArTol)2(BPTA)] (7). Structural analyses of 3-7 revealed that the overall stereochemistry of the [Fe(O2CAr')2Ln] units is dictated by electronic and steric factors of the N-donor ligands (L), as well as by the flexible coordination of the carboxylate ligands. Distinctive MOss-Bauer parameters obtained for these and related compounds facilitated the spectral assignment of a diiron(II) complex having asymmetric metal sites, [Fe2(p-02CArTol)3(2CArTol)(2,6-lutidine)] (2). Well-defined mononuclear iron carboxylate complexes thus may serve as subsite models for higher nuclearity species in both synthetic and biological systems. Chapter III. Functional Mimic of Dioxygen-Activating Centers in Non-Heme Diiron Enzymes: Mechanistic Implications of Paramagnetic Intermediates in the Reactions between Diiron(II) Complexes and Dioxygen Tetracarboxylate diiron(II) complexes, [Fe2(-O02CArTOl)2(02CArToll)2(C5H5N)2] (la) and [Fe2(Pl-02CArTol)4(4-tBuC5H4N)2] (2a), where ArTloCO2- = 2,6-di(p-tolyl)benzoate, react with 02 in CH2C12 at -78 C to afford deep green intermediates ...
by Dongwhan Lee.
Ph.D.
Guido, Rafael Victório Carvalho. "Planejamento de inibidores da enzima gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi: biologia estrutural e química medicinal". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-09062008-110714/.
Pełny tekst źródłaParasitic diseases are the foremost threat to human health and welfare around the world. Chagas\' disease (also called American trypanosomiasis) is a tropical parasitic disease which occurs in Latin America, particularly in South America. The currently available drugs for this parasitic disease have severe limitations, including poor efficacy and high toxicity. The crucial dependence of trypanosomatids on glycolysis as a source of energy makes the glycolytic enzymes promising targets for drug design. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Trypanosoma cruzi, a key enzyme in the glycolytic cascade, has been selected as an attractive drug target in this PhD Thesis work for studies in structural biology and medicinal chemistry for the identification and design of new enzyme inhibitors. In this context, compounds from both natural and synthetic sources with in vitro inhibitory activity against T. cruzi GAPDH were identified by screening assays, improving the chemical diversity of selective modulators of the target. Kinetic and structural studies have demonstrated the non-cooperative behavior between the T. cruzi active sites in the interaction with the NAD+ cofactor, shedding some light on the mechanistic and structural determinants underlying the biochemical recognition phenomenon. Quantitative structure-activity relationships (2D QSAR 2D and 3D QSAR) were successfully created, resulting in statistically significant models with good predictive ability for untested compounds. In addition, molecular modeling and 3D QSAR studies highlighted important structural aspects to assist the design of novel trypanosomatid GAPDH inhibitors. Finally, a structure-based virtual screening approach was employed for the identification of novel inhibitors of T. cruzi GAPDH, consisting of several consecutive hierarchical, fast pharmacophore matching and molecular docking, which afforded 35 inhibitor candidates for the target enzyme. The integration of structural biology and medicinal chemistry studies presented in this PhD Thesis are important contributions in the development of strong scientific basis for the design of new selective and potent inhibitors of GAPDH from T. cruzi, a molecular target of highest priority in our research group.
Mileni, Mauro [Verfasser]. "Biochemical, structural and functional characterization of diheme-containing quinol:fumarate reductases : the role of heme propionates and the enzymes from pathogenic ε-proteobacteria / von Mauro Mileni". 2005. http://d-nb.info/977153150/34.
Pełny tekst źródłaKsiążki na temat "Structural Modeling - Heme Enzymes"
Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.
Pełny tekst źródłaCzęści książek na temat "Structural Modeling - Heme Enzymes"
Sancho, Ferran, Gerard Santiago, Pep Amengual-Rigo i Victor Guallar. "CHAPTER 10. Modeling O2-dependent Heme Enzymes: A Quick Guide for Non-experts". W Dioxygen-dependent Heme Enzymes, 222–48. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012911-00222.
Pełny tekst źródłaHayashi, Takashi, i Koji Oohora. "CHAPTER 3. Myoglobin Derivatives Reconstituted with Modified Metal Porphyrinoids as Structural and Functional Models of the Cytochrome P450 Enzymes". W Dioxygen-dependent Heme Enzymes, 63–78. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012911-00063.
Pełny tekst źródłaKaufholz, Anna-Lena, Gunhild Layer, Dirk Heinz, Martina Jahn i Dieter Jahn. "The Structural Basis of Porphyrias — Defects of Heme Biosynthetic Enzymes". W Handbook of Porphyrin Science (Volume 29), 1–42. World Scientific Publishing Company, 2013. http://dx.doi.org/10.1142/9789814407755_0025.
Pełny tekst źródłaDaskalaki, Andriani. "Modeling of Porphyrin Metabolism with PyBioS". W Handbook of Research on Systems Biology Applications in Medicine, 643–54. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-076-9.ch036.
Pełny tekst źródłaAdebiyi, Marion Olubunmi, i Ibidun Christiana Obagbuwa. "Homology Modeling and Binding Site Analysis of SARS-CoV-2 (COVID-19) Main Protease 3D Structure". W Advanced Bioinspiration Methods for Healthcare Standards, Policies, and Reform, 79–96. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5656-9.ch004.
Pełny tekst źródłaH. Al-Shekaili, Hilal, Clara van Karnebeek i Blair R. Leavitt. "Vitamin B6 and Related Inborn Errors of Metabolism". W B-Complex Vitamins - Sources, Intakes and Novel Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99751.
Pełny tekst źródłaStreszczenia konferencji na temat "Structural Modeling - Heme Enzymes"
Bourne, Jonathan W., i Peter A. Torzilli. "In Silico Molecular Modeling of Collagen Crosslink Loading". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53352.
Pełny tekst źródła