Gotowa bibliografia na temat „Structural interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structural interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Structural interaction"
JOHNSTON, RICHARD D., i GEOFFREY W. BARTON. "Structural interaction analysis". International Journal of Control 41, nr 4 (kwiecień 1985): 1005–13. http://dx.doi.org/10.1080/0020718508961179.
Pełny tekst źródłaPooler, James. "Structural Spatial Interaction∗". Professional Geographer 45, nr 3 (sierpień 1993): 297–305. http://dx.doi.org/10.1111/j.0033-0124.1993.00297.x.
Pełny tekst źródłaGursoy, Attila, Ozlem Keskin i Ruth Nussinov. "Topological properties of protein interaction networks from a structural perspective". Biochemical Society Transactions 36, nr 6 (19.11.2008): 1398–403. http://dx.doi.org/10.1042/bst0361398.
Pełny tekst źródłaGuven-Maiorov, Emine, Chung-Jung Tsai i Ruth Nussinov. "Structural host-microbiota interaction networks". PLOS Computational Biology 13, nr 10 (12.10.2017): e1005579. http://dx.doi.org/10.1371/journal.pcbi.1005579.
Pełny tekst źródłaOke, S. A., i M. K. O. Ayomoh. "The hybrid structural interaction matrix". International Journal of Quality & Reliability Management 22, nr 6 (sierpień 2005): 607–25. http://dx.doi.org/10.1108/02656710510604917.
Pełny tekst źródłaAnton, M., i F. Casciati. "Structural control against failure interaction". Journal of Structural Control 5, nr 1 (czerwiec 1998): 63–73. http://dx.doi.org/10.1002/stc.4300050104.
Pełny tekst źródłaLee, Bong-Jin. "S2c2-1 Structure and Protein-Protein Interaction of Helicobacter Pylori Proteins(S2-c2: "Structural biology reveals macromolecular interaction",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S127. http://dx.doi.org/10.2142/biophys.46.s127_4.
Pełny tekst źródłaZHU, ZHENGWEI, ANDREY TOVCHIGRECHKO, TATIANA BARONOVA, YING GAO, DOMINIQUE DOUGUET, NICHOLAS O'TOOLE i ILYA A. VAKSER. "LARGE-SCALE STRUCTURAL MODELING OF PROTEIN COMPLEXES AT LOW RESOLUTION". Journal of Bioinformatics and Computational Biology 06, nr 04 (sierpień 2008): 789–810. http://dx.doi.org/10.1142/s0219720008003679.
Pełny tekst źródłaDeBlasio, Stacy L., Juan D. Chavez, Mariko M. Alexander, John Ramsey, Jimmy K. Eng, Jaclyn Mahoney, Stewart M. Gray, James E. Bruce i Michelle Cilia. "Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology". Journal of Virology 90, nr 4 (9.12.2015): 1973–87. http://dx.doi.org/10.1128/jvi.01706-15.
Pełny tekst źródłaHakes, Luke, David L. Robertson, Stephen G. Oliver i Simon C. Lovell. "Protein Interactions from Complexes: A Structural Perspective". Comparative and Functional Genomics 2007 (2007): 1–5. http://dx.doi.org/10.1155/2007/49356.
Pełny tekst źródłaRozprawy doktorskie na temat "Structural interaction"
Lea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure". Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.
Pełny tekst źródłaMethods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.
A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.
Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.
Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.
García, García Julio Abraham. "Reduction of seismically induced structural vibrations considering soil-structure interaction". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969246390.
Pełny tekst źródłaRahgozar, Mohammad Ali Carleton University Dissertation Engineering Civil. "Semismic soil-structure interaction analysis of structural base shear amplification". Ottawa, 1993.
Znajdź pełny tekst źródłaTan, Mengmeng. "Structural optimization of polypod-like structured DNA based on structural analysis and interaction with cells". Kyoto University, 2020. http://hdl.handle.net/2433/253233.
Pełny tekst źródłaCampagna, Anne. "Structural analysis of protein interaction networks". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/84111.
Pełny tekst źródłaLas funciones de las proteínas resultan de la manera con la que interaccionan entre ellas. Los experimentos de alto rendimiento han permitido identificar miles de interacciones de proteínas que forman parte de redes grandes y complejas. En esta tesis, utilizamos la información de estructuras de proteínas para estudiar las redes de interacciones de proteínas. Con esta información, se puede entender como las proteínas interaccionan al nivel molecular y con este conocimiento se puede identificar las interacciones que pueden ocurrir al mismo tiempo de las que están incompatibles. En base a este principio, hemos desarrollado un método que permite estudiar las redes de interacciones de proteínas con un punto de vista mas dinámico de lo que ofrecen clásicamente. Además, al combinar este método con minería de la literatura y Los datos de la proteomica hemos construido la red de interacciones de proteínas asociada con la Rodopsina, un receptor acoplado a proteínas G y hemos identificado sus sub--‐módulos funcionales. Estos análisis surgieron una novel vıa de señalización hacia la regulación del citoesqueleto y el trafico vesicular por Rodopsina, además de su papel establecido en la visión.
Stalker, R. "Engineer-computer interaction for structural monitoring". Thesis, Lancaster University, 2000. http://eprints.lancs.ac.uk/11792/.
Pełny tekst źródłaThorpe, Christopher John. "Structural analysis of MHC : peptide interaction". Thesis, Birkbeck (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321649.
Pełny tekst źródłaSouthall, Stacey Mary. "Structural studies of protein interaction modules". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615774.
Pełny tekst źródłaGallagher, Timothy. "Towards multi-scale reacting fluid-structure interaction: micro-scale structural modeling". Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53483.
Pełny tekst źródłaSribalaskandarajah, Kandiah. "A computational framework for dynamic soil-structure interaction analysis /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.
Pełny tekst źródłaKsiążki na temat "Structural interaction"
International Conference on Soil Dynamics and Earthquake Engineering (4th 1989 Mexico City, Mexico). Structural dynamics and soil-structure interaction. Redaktorzy Cakmak A. S. 1934- i Herrera Ismael. Ashurst: Computational Mechanics, 1989.
Znajdź pełny tekst źródłaEngineers, Institution of Structural. Soil-structure interaction: The real behaviour of structures. London: The Institution of Structural Engineers, 1989.
Znajdź pełny tekst źródłaThurston, Gaylen A. Modal interaction in postbuckled plates: Theory. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Znajdź pełny tekst źródłaFrajzyngier, Zygmunt. Explaining language structure through systems interaction. Philadelphia, PA: John Benjamins Pub., 2003.
Znajdź pełny tekst źródłaFrajzyngier, Zygmunt. Explaining language structure through systems interaction. Amsterdam: Benjamins, 2002.
Znajdź pełny tekst źródłaFenves, Gregory L. Evaluation of soil-structure interaction in buildings during earthquakes. Sacramento, Calif: California Dept. of Conservation, Division of Mines and Geology, Office of Strong Motion Studies, 1992.
Znajdź pełny tekst źródłaThompson, Catherine Isabelle. Protein interaction studies on the rotavirus non-structural protein NSP1. [s.l.]: typescript, 1999.
Znajdź pełny tekst źródłaWolf, John P. Soil-structure-interaction analysis in time domain. Englewood Cliffs, N.J: Prentice Hall, 1988.
Znajdź pełny tekst źródłaEuropean Committee for Standardization. Eurocode 7: Geotechnical design. London: British Standards Institution, 1995.
Znajdź pełny tekst źródłaEuropean Committee for Standardization. Eurocode 7: A commentary. London: Construction Research Communications Ltd., 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Structural interaction"
Aerts, Diederik, i Sandro Sozzo. "Entanglement Zoo I: Foundational and Structural Aspects". W Quantum Interaction, 84–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45912-6_8.
Pełny tekst źródłaAerts, Diederik, i Sandro Sozzo. "Entanglement Zoo I: Foundational and Structural Aspects". W Quantum Interaction, 84–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54943-4_8.
Pełny tekst źródłaDaley, C. G., C. Ferregut i R. Brown. "Structural Risk Model of Arctic Shipping". W Ice-Structure Interaction, 507–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84100-2_25.
Pełny tekst źródłade Miranda Batista, Eduardo. "Modelling Buckling Interaction". W Phenomenological and Mathematical Modelling of Structural Instabilities, 135–94. Vienna: Springer Vienna, 2005. http://dx.doi.org/10.1007/3-211-38028-0_3.
Pełny tekst źródłaAerts, Diederik, i Sandro Sozzo. "What is Quantum? Unifying Its Micro-physical and Structural Appearance". W Quantum Interaction, 12–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15931-7_2.
Pełny tekst źródłaTumanov, A. V., i V. N. Shlyannikov. "Damage Accumulation and Growth Models for the Creep-Fatigue Interaction". W Structural Integrity, 112–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47883-4_20.
Pełny tekst źródłaModi, V. J., i F. Welt. "On the Control of Instabilities in Fluid-Structure Interaction Problems". W Structural Control, 473–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3525-9_32.
Pełny tekst źródłaZiegler, Jürgen, i Markus Specker. "Navigation Patterns – Pattern Systems Based on Structural Mappings". W Engineering Human Computer Interaction and Interactive Systems, 224–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11431879_14.
Pełny tekst źródłaSchmidt, Thomas. "Structural Reasons in Rational Interaction". W Rationality, Rules, and Structure, 131–46. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9616-9_8.
Pełny tekst źródłaClough, Ray W. "A Structural Engineer’s View of Soil-Structure-Interaction". W Developments in Dynamic Soil-Structure Interaction, 91–109. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1755-5_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Structural interaction"
Dayal, Vinay, i Ilyas Mohammed. "Crack interaction in composites". W 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1454.
Pełny tekst źródłaYurkovich, Rudy. "Wing-tail interaction flutter revisited". W 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1447.
Pełny tekst źródłaLiu, Hongjun, Jie Liu i Jun Teng. "Control-Structure Interaction in Structural Vibration Control". W 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)196.
Pełny tekst źródłaSchuster, Sven, Sandro Schulze i Ina Schaefer. "Structural feature interaction patterns". W the Eighth International Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2556624.2556640.
Pełny tekst źródłaHeller, R., i S. Thangjitham. "Probabilistic service life prediction for creep-fatigue interaction". W 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1560.
Pełny tekst źródłaOBAYASHI, SHIGERU, i GURU GURUSWAMY. "Unsteady shock-vortex interaction on a flexible delta wing". W 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1109.
Pełny tekst źródłaIBRAHIM, R. "Experimental investigation of structural autoparametric interaction under random excitation". W 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-779.
Pełny tekst źródłaFERMAN, M., M. HEALEY i M. RICHARDSON. "Durability prediction of complex panels with fluid-structure interaction". W 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2220.
Pełny tekst źródłaKim, M., S. Lee, A. Kabe, M. Kim, S. Lee i A. Kabe. "Consistent and lumped area formulations in fluid-structure interaction". W 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1089.
Pełny tekst źródłaLIU, C. "Three-dimensional finite element analysis of crack-defect interaction". W 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-927.
Pełny tekst źródłaRaporty organizacyjne na temat "Structural interaction"
Ladias, John A. Structural Basis for the BRCA1 Interaction With Branched DNA. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2004. http://dx.doi.org/10.21236/ada429692.
Pełny tekst źródłaKennedy, R. P., R. H. Kincaid i S. A. Short. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2. Office of Scientific and Technical Information (OSTI), marzec 1985. http://dx.doi.org/10.2172/5817815.
Pełny tekst źródłaZha, Ge-Chenga, Ming-Ta Yang i Fariba Fahroo. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2006. http://dx.doi.org/10.21236/ada452028.
Pełny tekst źródłaEbeling, Robert, i Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), marzec 2021. http://dx.doi.org/10.21079/11681/39881.
Pełny tekst źródłaZabelina, Irina Alexandrovna, i Ekaterina Alexandrovna Klevakina. Assessment of structural changes in the economy of the transboundary of interaction between the Russian Federation and the PRC. Ljournal, 2017. http://dx.doi.org/10.18411/0131-2812-2017-1-36-48.
Pełny tekst źródłaSpottswood, S. M., Timothy J. Beberniss i Thomas G. Eason. Structural Response Prediction: Full-field, Dynamic Pressure and Displacement Measurements of a Panel Excited by Shock Boundary-layer Interaction. Fort Belvoir, VA: Defense Technical Information Center, luty 2015. http://dx.doi.org/10.21236/ada618183.
Pełny tekst źródłaBenaroya, Haym, i Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2000. http://dx.doi.org/10.21236/ada382782.
Pełny tekst źródłaIsaac, Daron, i Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, luty 2003. http://dx.doi.org/10.21236/ada435321.
Pełny tekst źródłaMartinez-Sanchez, Manuel, i John Dugundji. Fluid Dynamic - Structural Interactions of Labyrinth Seals. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1986. http://dx.doi.org/10.21236/ada174461.
Pełny tekst źródłaLove, E., i R. L. Taylor. Acoustic-structure interaction problems. Final report. Office of Scientific and Technical Information (OSTI), grudzień 1993. http://dx.doi.org/10.2172/110709.
Pełny tekst źródła