Gotowa bibliografia na temat „Structural interaction”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structural interaction”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Structural interaction"

1

JOHNSTON, RICHARD D., i GEOFFREY W. BARTON. "Structural interaction analysis". International Journal of Control 41, nr 4 (kwiecień 1985): 1005–13. http://dx.doi.org/10.1080/0020718508961179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pooler, James. "Structural Spatial Interaction∗". Professional Geographer 45, nr 3 (sierpień 1993): 297–305. http://dx.doi.org/10.1111/j.0033-0124.1993.00297.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gursoy, Attila, Ozlem Keskin i Ruth Nussinov. "Topological properties of protein interaction networks from a structural perspective". Biochemical Society Transactions 36, nr 6 (19.11.2008): 1398–403. http://dx.doi.org/10.1042/bst0361398.

Pełny tekst źródła
Streszczenie:
Protein–protein interactions are usually shown as interaction networks (graphs), where the proteins are represented as nodes and the connections between the interacting proteins are shown as edges. The graph abstraction of protein interactions is crucial for understanding the global behaviour of the network. In this mini review, we summarize basic graph topological properties, such as node degree and betweenness, and their relation to essentiality and modularity of protein interactions. The classification of hub proteins into date and party hubs with distinct properties has significant implications for relating topological properties to the behaviour of the network. We emphasize that the integration of protein interface structure into interaction graph models provides a better explanation of hub proteins, and strengthens the relationship between the role of the hubs in the cell and their topological properties.
Style APA, Harvard, Vancouver, ISO itp.
4

Guven-Maiorov, Emine, Chung-Jung Tsai i Ruth Nussinov. "Structural host-microbiota interaction networks". PLOS Computational Biology 13, nr 10 (12.10.2017): e1005579. http://dx.doi.org/10.1371/journal.pcbi.1005579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Oke, S. A., i M. K. O. Ayomoh. "The hybrid structural interaction matrix". International Journal of Quality & Reliability Management 22, nr 6 (sierpień 2005): 607–25. http://dx.doi.org/10.1108/02656710510604917.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Anton, M., i F. Casciati. "Structural control against failure interaction". Journal of Structural Control 5, nr 1 (czerwiec 1998): 63–73. http://dx.doi.org/10.1002/stc.4300050104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lee, Bong-Jin. "S2c2-1 Structure and Protein-Protein Interaction of Helicobacter Pylori Proteins(S2-c2: "Structural biology reveals macromolecular interaction",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S127. http://dx.doi.org/10.2142/biophys.46.s127_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

ZHU, ZHENGWEI, ANDREY TOVCHIGRECHKO, TATIANA BARONOVA, YING GAO, DOMINIQUE DOUGUET, NICHOLAS O'TOOLE i ILYA A. VAKSER. "LARGE-SCALE STRUCTURAL MODELING OF PROTEIN COMPLEXES AT LOW RESOLUTION". Journal of Bioinformatics and Computational Biology 06, nr 04 (sierpień 2008): 789–810. http://dx.doi.org/10.1142/s0219720008003679.

Pełny tekst źródła
Streszczenie:
Structural aspects of protein–protein interactions provided by large-scale, genome-wide studies are essential for the description of life processes at the molecular level. A methodology is developed that applies the protein docking approach (GRAMM), based on the knowledge of experimentally determined protein–protein structures (DOCKGROUND resource) and properties of intermolecular energy landscapes, to genome-wide systems of protein interactions. The full sequence-to-structure-of-complex modeling pipeline is implemented in the Genome Wide Docking Database (GWIDD) resource. Protein interaction data are imported to GWIDD from external datasets of experimentally determined interaction networks. Essential information is extracted and unified to form the GWIDD database. Structures of individual interacting proteins in the database are retrieved (if available) or modeled, and protein complex structures are predicted by the docking program. All protein sequence, structure, and docking information is conveniently accessible through a Web interface.
Style APA, Harvard, Vancouver, ISO itp.
9

DeBlasio, Stacy L., Juan D. Chavez, Mariko M. Alexander, John Ramsey, Jimmy K. Eng, Jaclyn Mahoney, Stewart M. Gray, James E. Bruce i Michelle Cilia. "Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology". Journal of Virology 90, nr 4 (9.12.2015): 1973–87. http://dx.doi.org/10.1128/jvi.01706-15.

Pełny tekst źródła
Streszczenie:
ABSTRACTDemonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus[PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in theLuteoviridaeand with unrelated viruses in theHerpesviridaeandAdenoviridae. Functional analysis of three PLRV-interacting host proteinsin plantausing a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies.IMPORTANCEThe exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.
Style APA, Harvard, Vancouver, ISO itp.
10

Hakes, Luke, David L. Robertson, Stephen G. Oliver i Simon C. Lovell. "Protein Interactions from Complexes: A Structural Perspective". Comparative and Functional Genomics 2007 (2007): 1–5. http://dx.doi.org/10.1155/2007/49356.

Pełny tekst źródła
Streszczenie:
By combining crystallographic information with protein-interaction data obtained through traditional experimental means, this paper determines the most appropriate method for generating protein-interaction networks that incorporate data derived from protein complexes. We propose that a combined method should be considered; in which complexes composed of five chains or less are decomposed using the matrix model, whereas the spoke model is used to derive pairwise interactions for those with six chains or more. The results presented here should improve the accuracy and relevance of studies investigating the topology of protein-interaction networks.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Structural interaction"

1

Lea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure". Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.

Pełny tekst źródła
Streszczenie:

Methods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.

A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.

Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.

Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.

Style APA, Harvard, Vancouver, ISO itp.
2

García, García Julio Abraham. "Reduction of seismically induced structural vibrations considering soil-structure interaction". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969246390.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rahgozar, Mohammad Ali Carleton University Dissertation Engineering Civil. "Semismic soil-structure interaction analysis of structural base shear amplification". Ottawa, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tan, Mengmeng. "Structural optimization of polypod-like structured DNA based on structural analysis and interaction with cells". Kyoto University, 2020. http://hdl.handle.net/2433/253233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Campagna, Anne. "Structural analysis of protein interaction networks". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/84111.

Pełny tekst źródła
Streszczenie:
Interactions between proteins give rise to many functions in cells. In the lastdecade, highthroughput experiments have identified thousands of protein interactions, which are often represented together as large protein interaction networks. However, the classical way of representing interaction networks, as nodes and edges, is too limited to take dynamic properties such as compatible and mutually exclusive interactions into account. In this work, we study protein interaction networks using structural information. More specifically, the analysis of protein interfaces in threedimensional protein structures enables us to identify which interfaces are compatible and which are not. Based on this principle, we have implemented a method, which aims at the analysis of protein interaction networks from a structural point of view by (1) predicting possible binary interactions for proteins that have been found in complex experimentally and (2) identifying possible mutually exclusive and compatible complexes. We validated our method by using positive and negative reference sets from literature and set up an assay to benchmark the identification of compatible and mutually exclusive structural interactions. In addition, we reconstructed the protein interaction network associated with the G proteincoupled receptor Rhodopsin and defined related functional submodules by combining interaction data with structural analysis of the network. Besides its established role in vision, our results suggest that Rhodopsin triggers two additional signaling pathways towards (1) cytoskeleton dynamics and (2) vesicular trafficking.
Las funciones de las proteínas resultan de la manera con la que interaccionan entre ellas. Los experimentos de alto rendimiento han permitido identificar miles de interacciones de proteínas que forman parte de redes grandes y complejas. En esta tesis, utilizamos la información de estructuras de proteínas para estudiar las redes de interacciones de proteínas. Con esta información, se puede entender como las proteínas interaccionan al nivel molecular y con este conocimiento se puede identificar las interacciones que pueden ocurrir al mismo tiempo de las que están incompatibles. En base a este principio, hemos desarrollado un método que permite estudiar las redes de interacciones de proteínas con un punto de vista mas dinámico de lo que ofrecen clásicamente. Además, al combinar este método con minería de la literatura y Los datos de la proteomica hemos construido la red de interacciones de proteínas asociada con la Rodopsina, un receptor acoplado a proteínas G y hemos identificado sus sub--‐módulos funcionales. Estos análisis surgieron una novel vıa de señalización hacia la regulación del citoesqueleto y el trafico vesicular por Rodopsina, además de su papel establecido en la visión.
Style APA, Harvard, Vancouver, ISO itp.
6

Stalker, R. "Engineer-computer interaction for structural monitoring". Thesis, Lancaster University, 2000. http://eprints.lancs.ac.uk/11792/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Thorpe, Christopher John. "Structural analysis of MHC : peptide interaction". Thesis, Birkbeck (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Southall, Stacey Mary. "Structural studies of protein interaction modules". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gallagher, Timothy. "Towards multi-scale reacting fluid-structure interaction: micro-scale structural modeling". Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53483.

Pełny tekst źródła
Streszczenie:
The fluid-structure interaction of reacting materials requires computational models capable of resolving the wide range of scales present in both the condensed phase energetic materials and the turbulent reacting gas phase. This effort is focused on the development of a micro-scale structural model designed to simulate heterogeneous energetic materials used for solid propellants and explosives. These two applications require a model that can track moving surfaces as the material burns, handle spontaneous formation of discontinuities such as cracks, model viscoelastic and viscoplastic materials, include finite-rate kinetics, and resolve both micro-scale features and macro-scale trends. Although a large set of computational models is applied to energetic materials, none meet all of these criteria. The Micro-Scale Dynamical Model serves as the basis for this work. The model is extended to add the capabilities required for energetic materials. Heterogeneous solid propellant burning simulations match experimental burn rate data and descriptions of material surface. Simulations of realistic heterogeneous plastic-bound explosives undergoing impact predict the formation of regions of localized heating called hotspots which may lead to detonation in the material. The location and intensity of these hotspots is found to vary with the material properties of the energetic crystal and binder and with the impact velocity. A statistical model of the hotspot peak temperatures for two frequently used energetic crystals indicates a linear relationship between the hotspot intensity and the impact velocity. This statistical model may be used to generate hotspot fields in macro-scale simulations incapable of resolving the micro-scale heating that occurs in heterogeneous explosives.
Style APA, Harvard, Vancouver, ISO itp.
10

Sribalaskandarajah, Kandiah. "A computational framework for dynamic soil-structure interaction analysis /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Structural interaction"

1

International Conference on Soil Dynamics and Earthquake Engineering (4th 1989 Mexico City, Mexico). Structural dynamics and soil-structure interaction. Redaktorzy Cakmak A. S. 1934- i Herrera Ismael. Ashurst: Computational Mechanics, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Engineers, Institution of Structural. Soil-structure interaction: The real behaviour of structures. London: The Institution of Structural Engineers, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Thurston, Gaylen A. Modal interaction in postbuckled plates: Theory. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Frajzyngier, Zygmunt. Explaining language structure through systems interaction. Philadelphia, PA: John Benjamins Pub., 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Frajzyngier, Zygmunt. Explaining language structure through systems interaction. Amsterdam: Benjamins, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fenves, Gregory L. Evaluation of soil-structure interaction in buildings during earthquakes. Sacramento, Calif: California Dept. of Conservation, Division of Mines and Geology, Office of Strong Motion Studies, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Thompson, Catherine Isabelle. Protein interaction studies on the rotavirus non-structural protein NSP1. [s.l.]: typescript, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wolf, John P. Soil-structure-interaction analysis in time domain. Englewood Cliffs, N.J: Prentice Hall, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

European Committee for Standardization. Eurocode 7: Geotechnical design. London: British Standards Institution, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

European Committee for Standardization. Eurocode 7: A commentary. London: Construction Research Communications Ltd., 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Structural interaction"

1

Aerts, Diederik, i Sandro Sozzo. "Entanglement Zoo I: Foundational and Structural Aspects". W Quantum Interaction, 84–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45912-6_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Aerts, Diederik, i Sandro Sozzo. "Entanglement Zoo I: Foundational and Structural Aspects". W Quantum Interaction, 84–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54943-4_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Daley, C. G., C. Ferregut i R. Brown. "Structural Risk Model of Arctic Shipping". W Ice-Structure Interaction, 507–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84100-2_25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

de Miranda Batista, Eduardo. "Modelling Buckling Interaction". W Phenomenological and Mathematical Modelling of Structural Instabilities, 135–94. Vienna: Springer Vienna, 2005. http://dx.doi.org/10.1007/3-211-38028-0_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Aerts, Diederik, i Sandro Sozzo. "What is Quantum? Unifying Its Micro-physical and Structural Appearance". W Quantum Interaction, 12–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15931-7_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tumanov, A. V., i V. N. Shlyannikov. "Damage Accumulation and Growth Models for the Creep-Fatigue Interaction". W Structural Integrity, 112–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47883-4_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Modi, V. J., i F. Welt. "On the Control of Instabilities in Fluid-Structure Interaction Problems". W Structural Control, 473–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3525-9_32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ziegler, Jürgen, i Markus Specker. "Navigation Patterns – Pattern Systems Based on Structural Mappings". W Engineering Human Computer Interaction and Interactive Systems, 224–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11431879_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Schmidt, Thomas. "Structural Reasons in Rational Interaction". W Rationality, Rules, and Structure, 131–46. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9616-9_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Clough, Ray W. "A Structural Engineer’s View of Soil-Structure-Interaction". W Developments in Dynamic Soil-Structure Interaction, 91–109. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1755-5_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Structural interaction"

1

Dayal, Vinay, i Ilyas Mohammed. "Crack interaction in composites". W 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yurkovich, Rudy. "Wing-tail interaction flutter revisited". W 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1447.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Hongjun, Jie Liu i Jun Teng. "Control-Structure Interaction in Structural Vibration Control". W 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Schuster, Sven, Sandro Schulze i Ina Schaefer. "Structural feature interaction patterns". W the Eighth International Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2556624.2556640.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Heller, R., i S. Thangjitham. "Probabilistic service life prediction for creep-fatigue interaction". W 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1560.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

OBAYASHI, SHIGERU, i GURU GURUSWAMY. "Unsteady shock-vortex interaction on a flexible delta wing". W 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

IBRAHIM, R. "Experimental investigation of structural autoparametric interaction under random excitation". W 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-779.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

FERMAN, M., M. HEALEY i M. RICHARDSON. "Durability prediction of complex panels with fluid-structure interaction". W 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2220.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kim, M., S. Lee, A. Kabe, M. Kim, S. Lee i A. Kabe. "Consistent and lumped area formulations in fluid-structure interaction". W 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1089.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

LIU, C. "Three-dimensional finite element analysis of crack-defect interaction". W 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-927.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Structural interaction"

1

Ladias, John A. Structural Basis for the BRCA1 Interaction With Branched DNA. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2004. http://dx.doi.org/10.21236/ada429692.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kennedy, R. P., R. H. Kincaid i S. A. Short. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2. Office of Scientific and Technical Information (OSTI), marzec 1985. http://dx.doi.org/10.2172/5817815.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zha, Ge-Chenga, Ming-Ta Yang i Fariba Fahroo. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2006. http://dx.doi.org/10.21236/ada452028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ebeling, Robert, i Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), marzec 2021. http://dx.doi.org/10.21079/11681/39881.

Pełny tekst źródła
Streszczenie:
This technical report documents the second of a two-phase research and development (R&D) study in support of the development of a combined Load and Resistance Factor Design (LRFD) methodology that accommodates geotechnical as well as structural design limit states for design of the U.S. Army Corps of Engineers (USACE) reinforced concrete, hydraulic navigation structures. To this end, this R&D effort extends reliability procedures that have been developed for other non-USACE structural systems to encompass USACE hydraulic structures. Many of these reinforced concrete, hydraulic structures are founded on and/or retain earth or are buttressed by an earthen feature. Consequently, the design of many of these hydraulic structures involves significant soil structure interaction. Development of the required reliability and corresponding LRFD procedures has been lagging in the geotechnical topic area as compared to those for structural limit state considerations and have therefore been the focus of this second-phase R&D effort. Design of an example T-Wall hydraulic structure involves consideration of five geotechnical and structural limit states. New numerical procedures have been developed for precise multiple limit state reliability calculations and for complete LRFD analysis of this example T-Wall reinforced concrete, hydraulic structure.
Style APA, Harvard, Vancouver, ISO itp.
5

Zabelina, Irina Alexandrovna, i Ekaterina Alexandrovna Klevakina. Assessment of structural changes in the economy of the transboundary of interaction between the Russian Federation and the PRC. Ljournal, 2017. http://dx.doi.org/10.18411/0131-2812-2017-1-36-48.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Spottswood, S. M., Timothy J. Beberniss i Thomas G. Eason. Structural Response Prediction: Full-field, Dynamic Pressure and Displacement Measurements of a Panel Excited by Shock Boundary-layer Interaction. Fort Belvoir, VA: Defense Technical Information Center, luty 2015. http://dx.doi.org/10.21236/ada618183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Benaroya, Haym, i Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2000. http://dx.doi.org/10.21236/ada382782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Isaac, Daron, i Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, luty 2003. http://dx.doi.org/10.21236/ada435321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Martinez-Sanchez, Manuel, i John Dugundji. Fluid Dynamic - Structural Interactions of Labyrinth Seals. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1986. http://dx.doi.org/10.21236/ada174461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Love, E., i R. L. Taylor. Acoustic-structure interaction problems. Final report. Office of Scientific and Technical Information (OSTI), grudzień 1993. http://dx.doi.org/10.2172/110709.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii