Rozprawy doktorskie na temat „Structural Health Monitoring”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Structural Health Monitoring”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Webb, Graham Thomas. "Structural health monitoring of bridges". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708027.
Pełny tekst źródłaGrisso, Benjamin Luke. "Advancing Autonomous Structural Health Monitoring". Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/29960.
Pełny tekst źródłaPh. D.
Ward, Jacob Thomas Elliott. "Guided wave structural health monitoring". Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682233.
Pełny tekst źródłaDawood, Tariq Ali. "Structural health monitoring of GFRP sandwich beam structures". Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438529.
Pełny tekst źródłaUllah, Israr. "Vibration-based structural health monitoring of composite structures". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/vibrationbased-structural-health-monitoring-of-composite-structures(f21abb03-5b46-4640-9447-0552d5e0c7d6).html.
Pełny tekst źródłaSingh, Gurjashan. "Health Monitoring of Round Objects using Multiple Structural Health Monitoring Techniques". FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/330.
Pełny tekst źródłaLannamann, Daniel L. "Structural health monitoring : numerical damage predictor for composite structures". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA390997.
Pełny tekst źródłaNayyerloo, Mostafa. "Real-time Structural Health Monitoring of Nonlinear Hysteretic Structures". Thesis, University of Canterbury. Department of Mechanical Engineering, 2011. http://hdl.handle.net/10092/6581.
Pełny tekst źródłaKirikera, Goutham Raghavendra. "A Structural Neural System for Health Monitoring of Structures". University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155149869.
Pełny tekst źródłaIslami, Kleidi. "System identification and structural health monitoring of bridge structures". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423079.
Pełny tekst źródłaQuesto lavoro di ricerca mira a due obiettivi per l'identificazione delle caratteristiche strutturali dei sistemi infrastrutturali civili. Il primo è legato al problema della identificazione del sistema dinamico, mediante analisi modale sperimentale e operativa, applicata ad una grande varietà di strutture da ponte. Basandosi su tecniche nel dominio del tempo e delle frequenze e, soprattutto, su dati di output di accelerazione, velocità o strain, i parametri modali sono stati stimati per ponti sospesi, ponti ad arco in muratura, ponti a travi in calcestruzzo e ad arco, ponti reticolari e ponti in acciaio a cassone. Dopo aver dato una panoramica approfondita dei metodi stocastici standard ed avanzati, sono state evidenziate le differenze degli approcci esistenti nelle loro performance per l'identificazione del sistema sui diversi tipi di infrastrutture civili. La valutazione della loro performance viene accompagnata da casi facilmente e difficilmente determinabili, che hanno dato buoni risultati solo dopo l'esecuzione di analisi avanzate di Clustering. Inoltre, sono stati sviluppati algoritmi di identificazione dinamica automatica in tempo reale basandosi sulle vibrazioni strutturali dei ponti monitorati, a sua volta utilizzati nel rilevamento dei danni strutturali tramite modelli statistici. Il secondo problema studiato riguarda la stima di spostamenti di ordine superiore che si svolgono sui ponti sospesi, eliminando il rumore di misura e di processo. Una volta fornito un trattamento completo della fusione dei dati di spostamento e accelerazione per i sistemi dinamici tramite il filtro di Kalman, la combinazione di questi due tipi di misurazioni ha mostrato un miglioramento nelle deformazioni osservate. Pertanto, è stata presentata un'analisi esauriente di un ponte sospeso e dei sui dati dinamici e di spostamento filtrati. I test positivi sono stati successivamente utilizzati per definire il problema dei sensori non collocati alla stessa locazione ed applicazione su modelli semplificati
Brigman, Nicholas (Nicholas Allen). "Structural health monitoring in commercial aviation". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73846.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 87-90).
The number of aging commercial aircraft in service is steadily increasing as airlines continue to extend the life of their aircraft. Aging aircraft are more susceptible to fatigue and corrosion and require more frequent and intensive inspections and maintenance, which is a financial drain on operators. One way to improve the economics and safety of commercial aircraft is through implementation of a structural health monitoring (SHM) system. An ideal SHM would be able to give be capable of indicating damage type, location, severity, and estimate the remaining life of the structure while the structure is in use. This paper is an overview of how SHM can be applied in commercial aviation including discussion of requirements, implementation, challenges, and introducing several possible SHM systems. The SHM systems introduced in this paper are: vibration based monitoring, fiber optic sensors, and high frequency wave propagation techniques including acoustic emission, ultrasonic, Lamb waves, piezoelectric and MEMS actuator/sensors. The limitations and challenges inhibiting introduction of SHM to industry and recommendations for the future are also discussed.
by Nicholas Brigman.
M.Eng.
Mani, Girindra N. "Structural Health Monitoring of Rotordynamic Systems". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1144522032.
Pełny tekst źródłaAshwin, Belle. "WIRELESS INTELLIGENT STRUCTURAL HEALTH MONITORING SYSTEM". VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/1626.
Pełny tekst źródłaBogomolov, Denis <1992>. "Structural health monitoring of storage tanks". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10215/1/Bogomolov%20-%20PhD%20thesis.pdf.
Pełny tekst źródłaDing, Wenxiang. "Structural health monitoring of piezoelectric ultrasonic transducers". Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2021. http://www.theses.fr/2021ISAB0008.
Pełny tekst źródłaUltrasonic transducers have been widely used in medical diagnostic, therapy, non-destructive evaluation, cleaning, underwater sonar, and other applications. The proper functioning of the transducer itself is a key factor in the reliability of the entire system. However, due to the misuse of operators or material degradation, defects may occur, such as breakages in cables, cracks, damaged or weakened crystals, and delamination between layers. This contribution focuses on a detail analysis of the influence of bonding delamination on the performance of the transducer, aiming to determine procedures to facilitate the monitoring of the behavior of the transducer during its lifetime and the detection of degradations before they significantly affect the performance of the system.In the frame of this work, an original two-dimensional analytical model for coupled vibrations of finite piezoelectric resonators is proposed. General solutions for all the physical quantities in Cartesian and cylindrical coordinate systems are deduced from the governing equations. They are expressed as a series of trigonometric or Bessel functions. Electrical impedance, mode shape, and frequency spectrum of piezoceramics are calculated by the proposed analytical method as well as by the finite element method. Comparison of the results of these two methods shows an excellent agreement.A systematic investigation of the influence of different kinds of bonding delamination on the performance of single-element and linear array ultrasonic transducers is presented. Finite element models are developed to show the impact of bonding delamination as well as other factors on the electromechanical admittance (EMA) of ultrasonic transducers, which are composed of a piezoceramic disk or parallelepiped, a backing, and a matching layer. Experimental studies are set up to validate the models and quantitative indicators are proposed. 3D printed backings and matching layers are mounted on piezoceramic elements to obtain an intact model transducer and delaminated ones. Comparison between numerical and experimental results show a good agreement, which allows to affirm that changes in EMA can reveal the occurrence and extent of a delamination in an ultrasound probe
Singh-Levett, Ishan. "Real-time integral based structural health monitoring". Thesis, University of Canterbury. Mechanical Engineering, 2006. http://hdl.handle.net/10092/1171.
Pełny tekst źródłaCiampa, Francesco. "Structural health monitoring systems for impacted isotropic and anisotropic structures". Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558884.
Pełny tekst źródłaFekrmandi, Hadi. "Development of New Structural Health Monitoring Techniques". FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=2923&context=etd.
Pełny tekst źródłaBartoli, Ivan. "Structural health monitoring by ultrasonic guided waves". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3283893.
Pełny tekst źródłaTitle from first page of PDF file (viewed December 3, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 311-325).
Azhari, Faezeh. "Cement-based sensors for structural health monitoring". Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/7324.
Pełny tekst źródłaMovva, Gopichand. "Optimal Sensor Placement for Structural Health Monitoring". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc700010/.
Pełny tekst źródłaStorozhev, Dmitry Leonidovich. "Smart Rotating Machines for Structural Health Monitoring". Cleveland State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=csu1262724991.
Pełny tekst źródłaKolli, Phaneendra K. "Wireless Sensor Network for Structural Health Monitoring". Youngstown State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1274304285.
Pełny tekst źródłaValiante, Rossella. "Innovative techniques for Structural Health Monitoring: a". Doctoral thesis, Universita degli studi di Salerno, 2011. http://hdl.handle.net/10556/213.
Pełny tekst źródłaThe here considered SHM procedure concerns innovative techniques for a structural monitoring of aeronautical components, all of them based upon the use of a Scanning Laser Doppler Vibrometer. The vibrometer is used to detect the dynamic response of the component under test, in wave propagation regime. The signal so recorded consists of space and time maps of vibration velocity offplane. The purpose of the study lies in the analysis of such maps, using filtering techniques that separate reflected waves from the incident ones, so that they can enable to identify defects. The innovative application of a novel technique (introduced by Ruzzene) for the first time to stringerized composite specimens, allowed the generation of baseline information directly from the measured dataset. The effectiveness of these methods has been demonstrated through their application to detection of a delamination in a composite stiffened plate and detection of defect/wrinkling in a T-shaped skin to stringer component. The most significant technological innovations achieved through these theses are: • The option key to excite the surface of a complex structure (in this case, the skins of a composite stingerized panel) and to derive the velocity profile on surfaces orthogonal to the excited one (in our case the web of the stringer) has been checked. This is crucial, as it would allow to install the piezo elements on the stringers, to excite them and to read velocities of points over the entire surface of the skin, without disassembly. Up to now, only cases of standard solicitation have been analyzed in literature, or cases where the velocities were acquired on the same surfaces excited. Today, therefore, there is no published study on the analysis conducted in such a manner. • The damage index was also applied to stiffened and greatly complex geometries. Up to now, in literature only analysis applied to simple flat panels can be found. • The FEM simulation was carried out on stiffened panels. In literature there are only simulations carried out on simple structural elements like flat panels without any stiffener. [edited by author]
IX n.s.
García, Cava David. "Data-based vibration structural health monitoring methodology for composite laminated structures". Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26903.
Pełny tekst źródłaBoettcher, Dennis N. "A Resistance Based Structural Health Monitoring System for Composite Structure Applications". DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/843.
Pełny tekst źródłaKuok, Sin Chi. "Ambient effects on structural health monitoring of buildings". Thesis, University of Macau, 2009. http://umaclib3.umac.mo/record=b2099636.
Pełny tekst źródłaGuan, Hong. "Vibration-based structural health monitoring of highway bridges". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3211821.
Pełny tekst źródłaHejll, Arvid. "Civil structural health monitoring : strategies, methods and applications /". Luleå : Division of Structural Engineering, Department of Civil and Mining Engineering, Luleå University of Technology, 2007. http://epubl.ltu.se/1402-1544/2007/10/.
Pełny tekst źródłaKonstantinidis, Georgios. "Structural health monitoring of plates using lamb waves". Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495779.
Pełny tekst źródłaAmraoui, Mohamed Yacine. "Non-invasive damage detection and structural health monitoring". Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271865.
Pełny tekst źródłaJesus, André H. "Modular Bayesian uncertainty assessment for structural health monitoring". Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/109522/.
Pełny tekst źródłaShi, Haichen. "On nonlinear cointegration methods for structural health monitoring". Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22301/.
Pełny tekst źródłaYang, Chen. "Vibration-based structural health monitoring of composite laminates". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/vibrationbased-structural-health-monitoring-of-composite-laminates(b762020d-f2c6-49ed-84ba-dfc2e3ece187).html.
Pełny tekst źródłaDodson, Jacob Christopher. "Guided Wave Structural Health Monitoring with Environmental Considerations". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27070.
Pełny tekst źródłaPh. D.
Anton, Steven Robert. "Baseline-Free and Self-Powered Structural Health Monitoring". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/33731.
Pełny tekst źródłaTo address the issue of baseline management, a novel SHM technique is developed. This new method accomplishes instantaneous baseline measurements by deploying an array of piezoelectric sensors/actuators used for Lamb wave propagation-based SHM such that data recorded from equidistant sensor-actuator paths can be used to instantaneously identify several common features of undamaged paths. Once identified, features from these undamaged paths can be used to form a baseline for real-time damage detection. This method utilizes the concept of sensor diagnostics, a recently developed technique that minimizes false damage identification and measurement distortion caused by faulty sensors. Several aspects of the instantaneous baseline damage detection method are explored in this work including the implementation of sensor diagnostics, determination of the features best used to identify damage, development of signal processing algorithms used to analyze data, and the comparison of two sensor/actuator deployment schemes.
The ultimate goal in the development of practical SHM systems is to create autonomous damage detection systems. A limiting factor in current SHM technology is the energy supply required to operate the system. Many existing SHM systems utilize wired power supplies or batteries to power sensors, data transmission, data acquisition, and data processing hardware. Although batteries eliminate the need to run wires to SHM hardware, their periodic replacement requires components to be placed in easily accessible locations which is not always practical, especially in embedded applications. Additionally, there is a high cost associated with battery monitoring and replacement. In an effort to eliminate replaceable energy supplies in SHM systems, the concept of energy harvesting is investigated. Energy harvesting devices are designed to capture surrounding ambient energy and convert it into usable electrical energy. Several types of energy harvesting exist, including vibration, thermal, and solar harvesting. A solar energy harvesting system is developed for use in powering SHM hardware. Integrating energy harvesting technology into SHM systems can provide autonomous health monitoring of structures.
Master of Science
Simmers, Garnett E. Jr. "Impedance-Based Structural Health Monitoring to Detect Corrosion". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32636.
Pełny tekst źródłaMaster of Science
Shiryayev, Oleg V. "Improved Structural Health Monitoring Using Random Decrement Signatures". Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1214234132.
Pełny tekst źródłaCicero, Tindaro. "Signal processing for guided wave structural health monitoring". Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/5302.
Pełny tekst źródłaSharma, Vinod K. "Laser doppler vibrometer for efficient structural health monitoring". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26708.
Pełny tekst źródłaCommittee Chair: Hanagud, Sathya; Committee Member: Apetre, Nicole; Committee Member: Engelstad, Steve; Committee Member: Glass, Brian; Committee Member: Kardomateas, George; Committee Member: Ruzzene, Massimo. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Zhang, Jian. "Advanced signal processing technique for structural health monitoring". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/136142.
Pełny tekst źródłaFan, Xingyu. "Electromechanical Impedance-based Techniques for Structural Health Monitoring". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75614.
Pełny tekst źródłaZonzini, Federica <1994>. "Intelligent Sensor Systems for Structural Health Monitoring Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10141/4/Zonzini_Federica_Tesi.pdf.
Pełny tekst źródłaCappello, Carlo. "Theory of Decision Based on Structural Health Monitoring". Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/368420.
Pełny tekst źródłaCappello, Carlo. "Theory of Decision Based on Structural Health Monitoring". Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/2570/1/Theory_of_Decision_Based_on_Structural_Health_Monitoring_-_PhD_thesis_by_Carlo_Cappello.pdf.
Pełny tekst źródłaThiene, Marco. "Study of Innovative Techniques for Structural Health Monitoring". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423520.
Pełny tekst źródłaNumerosi fattori spingono l‟industria aeronautica verso l‟utilizzo di materiali innovativi da impiegare nelle struttutre dei veivoli. In particolare l‟esigenza di contenere il consumo di carburante, con la conseguente riduzione dei costi e delle emissioni, ha portato allo sviluppo di nuovi aerei in cui una parte della struttura è da realizzata in materiali compositi; l‟esempio più recente è rappresentato dal Boeing 787 Dreamliner in cui oltre il 50% della struttura è costituito da materiale composito. Le elevate caratteristiche meccaniche di questi materiali sono tuttavia accompagnate da meccanismi di danneggiamento non ancora del tutto conosciuti. Questo fa sì che il loro utilizzo richieda un programma di manutenzione dedicato, che influisce in maniera considerevole sui costi di gestione del singolo veivolo. Per questo motivo la ricerca scientifica si è concentrata negli ultimi anni sullo sviluppo di nuove metodologie per monitorare l‟integrità strutturale dei principali componenti dei veivoli. L‟obbiettivo finale di questa ricerca è sviluppare un sistema di controllo che funzioni in tempo reale, che possa cioè individuare eventuali danni nella struttura mentre il veivolo è in volo. In questo modo non solo si potrebbero evitare catastrofici incidenti, ma anche limitare le manutenzioni programmate, che spesso risultano essere non necessarie in quanto la struttura potrebbe non presentare alcuna criticità. Il campo ingengeristico che si occupa di questa innovazione è definito structural health monitoring (SHM). Dal punto di vista del rilevamento di un possible danno nella struttura, due differenti approcci possono essere seguiti. Il primo, chiamato attivo, richiede l‟utilizzo di uno stimolo che ecciti la dinamica della struttura. Dalla risposta, raccolta mediante un certo numero di sensori, è possibile determinare se un danno è presente. Il secondo approccio, denominato passivo, non richiede alcuno stimolo, in quanto un‟eventuale forzante esterna è proprio l‟evento che si vuole monitorare; la tipica applicazione di questo metodo riguarda il montoraggio di impatti. La ricerca svolta in questa tesi prevede lo studio di entrambi gli approcci. Nella prima parte, una tecnica attiva, basata sulla proper orthogonal decomposition (POD) e sul gapped smoothing method (GSM), è analizzata con lo scopo di localizzare un possibile danno all‟interno di tipici componenti aeronautici. Diverse posizioni del danno sono analizzate. La principale innovazione consiste nello studio di un pannello rinforzato, che in letteratura non è mai stato trattato in dettaglio con metodi basati su forme modali. Nella seconda parte della tesi è studiato un metodo passivo. Sono trattati due casi: la ricostruzione della forza d‟impatto e la localizzazione dello stesso. Nel primo caso il metodo sviluppato risulta in grado di predire correttamente la forza anche nel caso in cui la risposta del componente sia nonlineare. Nel secondo caso l‟applicazione della POD per localizzare impatti rappresenta una novità nel relativo campo di ricerca. La tesi è articolata nel modo seguente. Il primo capitolo fornisce un panorama generale sul perché il monitoraggio strutturale sia importante in ambito aeronautico. I Capitoli 2 e 3 introducono la formulazione matematica utilizzata per il rileamento del danno. Nel Capitolo 4 vengono presentati i risultati relativi all‟individuazione del danno mediante POD e GSM. Nel Capitolo 5 si illustra la formulazione matematica relativa ai metodi passivi. In particolare sono descritti in dettaglio gli innovativi algoritmi utilizzati. Il Capitolo 6 presenta i risultati relativi al monitoraggio d‟impatti. I miglioramenti rispetto ad approcci classici sono evidenziati in modo particolare . Nelle conclusioni vengono riproposti i principali risultati ottenuti nei capitoli precedenti. Alla fine della tesi numerose appendici approfondiscono alcuni argomenti che vengono parzialmente trattati nel corso dei vari capitoli.
Pawar, Prashant M. "Structural Health Monitoring Of Composite Helicopter Rotor Blades". Thesis, Indian Institute of Science, 2006. https://etd.iisc.ac.in/handle/2005/273.
Pełny tekst źródłaPawar, Prashant M. "Structural Health Monitoring Of Composite Helicopter Rotor Blades". Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/273.
Pełny tekst źródłaJaswal, Priya. "Health Monitoring of Large Composite Structures". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1562842764406158.
Pełny tekst źródłaTibaduiza, Burgos Diego Alexander. "Design and validation of a structural health monitoring system for aeronautical structures". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/116811.
Pełny tekst źródłaLa monitorización de daños en estructuras (SHM por sus siglas en inglés) es un área que tiene como principal objetivo la verificación del estado o la salud de la estructura con el fin de asegurar el correcto funcionamiento de esta y ahorrar costos de mantenimiento. Para esto se hace uso de sensores que son adheridos a la estructura, monitorización continua y algoritmos. Diferentes beneficios se obtienen de la aplicación de SHM, algunos de ellos son: el conocimiento sobre el desempeño de la estructura cuando esta es sometida a diversas cargas y cambios ambientales, el conocimiento del estado actual de la estructura con el fin de determinar la integridad de la estructura y definir si esta puede trabajar adecuadamente o si por el contrario debe ser reparada o reemplazada con el correspondiente beneficio del ahorro de gastos de mantenimiento. El paradigma de la identificación de daños (comparación entre los datos obtenidos de la estructura sin daños y la estructura en un estado posterior para determinar cambios) puede ser abordado como un problema de reconocimiento de patrones. Algunas técnicas estadísticas tales como Análisis de Componentes Principales (PCA por sus siglas en inglés) o Análisis de Componentes Independientes (ICA por sus siglas en ingles) son muy útiles para este propósito puesto que permiten obtener la información más relevante de una gran cantidad de variables. Esta tesis hace uso de un sistema piezoeléctrico activo para el desarrollo de algoritmos estadísticos de manejo de datos para la detección, localización y clasificación de daños en estructuras. Este sistema piezoeléctrico activo está permanentemente adherido a la superficie de la estructura bajo prueba con el objeto de aplicar señales vibracionales de excitación y recoger las respuestas dinámicas propagadas a través de la estructura en diferentes puntos. Como técnica de reconocimiento de patrones se usa Análisis de Componentes Principales para realizar la tarea principal de la metodología propuesta: construir un modelo PCA base de la estructura sin daño y posteriormente compararlo con los datos de la estructura bajo prueba. Adicionalmente, algunos índices de daños son calculados para detectar anormalidades en la estructura bajo prueba. Para la localización de daños se usan las contribuciones de cada sensor a cada índice, las cuales son calculadas mediante varios métodos de contribución y comparadas para mostrar sus ventajas y desventajas. Para la clasificación de daños, se amplia la metodología de detección añadiendo el uso de Mapas auto-organizados, los cuales son adecuadamente entrenados y validados para construir un modelo patrón base usando proyecciones de los datos sobre el modelo PCA base e índices de detección de daños. Este patrón es usado como referencia para realizar un diagnóstico ciego de la estructura. Adicionalmente, dentro de la metodología propuesta, se utiliza ICA en lugar de PCA como técnica de reconocimiento de patrones. Se incluye también una comparación entre la aplicación de las dos técnicas para mostrar las ventajas y desventajas. Para estudiar el desempeño de la metodología de clasificación de daños bajo diferentes escenarios, esta se prueba usando datos obtenidos de una estructura sometida a diferentes temperaturas. Las metodologías desarrolladas en este trabajo fueron probadas y validadas usando diferentes estructuras, en particular un álabe de turbina, un esqueleto de ala y un fuselaje de avión, así como algunas placas de aluminio y de material compuesto