Gotowa bibliografia na temat „Strip Packing problem”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Strip Packing problem”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Strip Packing problem"
Chekanin, Vladislav A., i Alexander V. Chekanin. "Development of the Multimethod Genetic Algorithm for the Strip Packing Problem". Applied Mechanics and Materials 598 (lipiec 2014): 377–81. http://dx.doi.org/10.4028/www.scientific.net/amm.598.377.
Pełny tekst źródłaAlvarez-Valdes, R., F. Parreño i J. M. Tamarit. "Reactive GRASP for the strip-packing problem". Computers & Operations Research 35, nr 4 (kwiecień 2008): 1065–83. http://dx.doi.org/10.1016/j.cor.2006.07.004.
Pełny tekst źródłaZhao, Xusheng, Yunqing Rao i Jie Fang. "A reinforcement learning algorithm for the 2D-rectangular strip packing problem". Journal of Physics: Conference Series 2181, nr 1 (1.01.2022): 012002. http://dx.doi.org/10.1088/1742-6596/2181/1/012002.
Pełny tekst źródłaBOUGERET, MARIN, PIERRE-FRANCOIS DUTOT, KLAUS JANSEN, CHRISTINA ROBENEK i DENIS TRYSTRAM. "APPROXIMATION ALGORITHMS FOR MULTIPLE STRIP PACKING AND SCHEDULING PARALLEL JOBS IN PLATFORMS". Discrete Mathematics, Algorithms and Applications 03, nr 04 (grudzień 2011): 553–86. http://dx.doi.org/10.1142/s1793830911001413.
Pełny tekst źródłaCôté, Jean-François, Mauro Dell'Amico i Manuel Iori. "Combinatorial Benders' Cuts for the Strip Packing Problem". Operations Research 62, nr 3 (czerwiec 2014): 643–61. http://dx.doi.org/10.1287/opre.2013.1248.
Pełny tekst źródłaMartello, Silvano, Michele Monaci i Daniele Vigo. "An Exact Approach to the Strip-Packing Problem". INFORMS Journal on Computing 15, nr 3 (sierpień 2003): 310–19. http://dx.doi.org/10.1287/ijoc.15.3.310.16082.
Pełny tekst źródłaChen, Jianli, Wenxing Zhu i Zheng Peng. "A heuristic algorithm for the strip packing problem". Journal of Heuristics 18, nr 4 (30.05.2012): 677–97. http://dx.doi.org/10.1007/s10732-012-9203-9.
Pełny tekst źródłaFang, Jie, Yunqing Rao i Mingliang Shi. "A deep reinforcement learning algorithm for the rectangular strip packing problem". PLOS ONE 18, nr 3 (16.03.2023): e0282598. http://dx.doi.org/10.1371/journal.pone.0282598.
Pełny tekst źródłaHorn, Matthias, Emir Demirović i Neil Yorke-Smith. "Parallel Batch Processing for the Coating Problem". Proceedings of the International Conference on Automated Planning and Scheduling 33, nr 1 (1.07.2023): 171–79. http://dx.doi.org/10.1609/icaps.v33i1.27192.
Pełny tekst źródłaDomović, Daniel, Tomislav Rolich i Marin Golub. "Evolutionary hyper-heuristic for solving the strip-packing problem". Journal of The Textile Institute 110, nr 8 (4.01.2019): 1141–51. http://dx.doi.org/10.1080/00405000.2018.1550136.
Pełny tekst źródłaRozprawy doktorskie na temat "Strip Packing problem"
Ortmann, Frank. "Heuristics for offline rectangular packing problems". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/3992.
Pełny tekst źródłaENGLISH ABSTRACT: Packing problems are common in industry and there is a large body of literature on the subject. Two packing problems are considered in this dissertation: the strip packing problem and the bin packing problem. The aim in both problems is to pack a speci ed set of small items, the dimensions of which are all known prior to packing (hence giving rise to an o ine problem), into larger objects, called bins. The strip packing problem requires packing these items into a single bin, one dimension of which is unbounded (the bin is therefore referred to as a strip). In two dimensions the width of the strip is typically speci ed and the aim is to pack all the items into the strip, without overlapping, so that the resulting packing height is a minimum. The bin packing problem, on the other hand, is the problem of packing the items into a speci ed set of bins (all of whose dimensions are bounded) so that the wasted space remaining in the bins (which contain items) is a minimum. The bins may all have the same dimensions (in which case the problem is known as the single bin size bin packing problem), or may have di erent dimensions, in which case the problem is called the multiple bin size bin packing problem (MBSBPP). In two dimensions the wasted space is the sum total of areas of the bins (containing items) not covered by items. Many solution methodologies have been developed for above-mentioned problems, but the scope of the solution methodologies considered in this dissertation is restricted to heuristics. Packing heuristics follow a xed set of rules to pack items in such a manner as to nd good, feasible (but not necessarily optimal) solutions to the strip and bin packing problems within as short a time span as possible. Three types of heuristics are considered in this dissertation: (i) those that pack items into levels (the heights of which are determined by the heights of the tallest items in these levels) in such a manner that all items are packed along the bottom of the level, (ii) those that pack items into levels in such a manner that items may be packed anywhere between the horizontal boundaries that de ne the levels, and (iii) those heuristics that do not restrict the packing of items to levels. These three classes of heuristics are known as level algorithms, pseudolevel algorithms and plane algorithms, respectively. A computational approach is adopted in this dissertation in order to evaluate the performances of 218 new heuristics for the strip packing problem in relation to 34 known heuristics from the literature with respect to a set of 1 170 benchmark problem instances. It is found that the new level-packing heuristics do not yield signi cantly better solutions than the known heuristics, but several of the newly proposed pseudolevel heuristics do yield signi cantly better results than the best of the known pseudolevel heuristics in terms of both packing densities achieved and computation times expended. During the evaluation of the plane algorithms two classes of heuristics were identi ed for packing problems, namely sorting-dependent and sortingindependent algorithms. Two new sorting techniques are proposed for the sorting-independent algorithms and one of them yields the best-performing heuristic overall. A new heuristic approach for the MBSBPP is also proposed, which may be combined with level and pseudolevel algorithms for the strip packing problem in order to nd solutions to the problem very rapidly. The best-performing plane-packing heuristic is modi ed to pack items into the largest bins rst, followed by an attempted repacking of the items in those bins into smaller bins with the aim of further minimising wasted space. It is found that the resulting plane-packing algorithm yields the best results in terms of time and packing density, but that the solution di erences between pseudolevel algorithms are not as marked for the MBSBPP as for the strip packing problem.
AFRIKAANSE OPSOMMING: Inpakkingsprobleme kom algemeen in die industrie voor en daar is 'n aansienlike volume literatuur oor hierdie onderwerp. Twee inpakkingsprobleme word in hierdie proefskrif oorweeg, naamlik die strook-inpakkingsprobleem en die houer-inpakkingsprobleem. In beide probleme is die doel om 'n gespesi seerde versameling klein voorwerpe, waarvan die dimensies almal voordat inpakking plaasvind, bekend is (en die probleem dus 'n sogenaamde a yn-probleem is), in een of meer groter houers te pak. In die strook-inpakkingsprobleem word hierdie voorwerpe in een houer, waarvan een dimensie onbegrens is, ingepak (hierdie houer word dus 'n strook genoem). In twee dimensies word die wydte van die strook gewoonlik gespesi seer en is die doel om al die voorwerpe sonder oorvleueling op s o 'n manier in die strook te pak dat die totale inpakkingshoogte geminineer word. In die houer-inpakkingsprobleem, daarenteen, is die doel om die voorwerpe op s o 'n manier in 'n gespesi seerde aantal houers (waarvan al die dimensies begrens is) te pak dat die vermorste of oorblywende ruimte in die houers (wat wel voorwerpe bevat) 'n minimum is. Die houers mag almal dieselfde dimensies h^e (in welke geval die probleem as die enkelgrootte houer-inpakkingsprobleem bekend staan), of mag verskillende dimensies h^e (in welke geval die probleem as die veelvuldige-grootte houer-inpakkingsprobleem bekend staan, afgekort as VGHIP). In twee dimensies word die vermorste ruimte geneem as die somtotaal van daardie deelareas van die houers (wat wel voorwerpe bevat) waar daar geen voorwerpe geplaas word nie. Verskeie oplossingsmetodologie e is al vir die bogenoemde twee inpakkingsprobleme ontwikkel, maar die bestek van die metodologie e wat in hierdie proefskrif oorweeg word, word beperk tot heuristieke. 'n Inpakkingsheuristiek volg 'n vaste stel re els waarvolgens voorwerpe in houers gepak word om so spoedig moontlik goeie, toelaatbare (maar nie noodwendig optimale) oplossings tot die strook-inpakkingsprobleem en die houer-inpakkingsprobleem te vind. Drie tipes inpakkingsheuristieke word in hierdie proefskrif oorweeg, naamlik (i) heuristieke wat voorwerpe langs die onderste randte van horisontale vlakke in die houers pak (die hoogtes van hierdie vlakke word bepaal deur die hoogtes van die hoogste item in elke vlak), (ii) heuristieke wat voorwerpe op enige plek binne horisontale stroke in die houers pak, en (iii) heuristieke waar inpakking nie volgens horisontale vlakke of stroke beperk word nie. Hierdie drie klasse heuristieke staan onderskeidelik as vlakalgoritmes, pseudo-vlakalgoritmes en platvlakalgoritmes bekend. 'n Berekeningsbenadering word in hierdie proefskrif gevolg deur die werkverrigting van die 218 nuwe heuristieke vir die strook-inpakkingsprobleem met die werkverrigting van 34 bekende heuristieke uit die literatuur te vergelyk, deur al die heuristieke op 1 170 toetsprobleme toe te pas. Daar word bevind dat die nuwe vlakalgoritmes nie 'n noemenswaardige verbetering in oplossingskwaliteit in vergeleke met soortgelyke bestaande algoritmes in die literatuur lewer nie, maar dat verskeie nuwe pseudo-vlakalgoritmes wel noemenswaardige verbeteringe in terme van beide inpakkingsdigthede en oplossingstye in vergeleke met die beste bestaande algoritmes in die literatuur lewer. Assessering van die platvlakalgoritmes het gelei tot die identi kasie van twee deelklasse van algoritmes, naamlik sorteringsafhanklike- en sorteringsonafhanklike algoritmes. Twee nuwe sorteringstegnieke word ook vir die deelklas van sorteringsonafhanklike algoritmes voorgestel, en een van hulle lewer die algeheel beste inpakkingsheursitiek. 'n Nuwe heuristiese benadering word ook vir die VGHIP ontwikkel. Hierdie benadering kan met vlak- of pseudo-vlakalgoritmes vir die strook-inpakkingsprobleem gekombineer word om baie vinnig oplossings vir die VGHIP te vind. Die beste platvlakheuristiek vir die strookinpakkingsprobleem word ook aangepas om voorwerpe eers in die grootste houers te pak, en daarna in kleiner houers te herpak met die doel om vermorste ruimte verder te minimeer. Daar word bevind dat die resulterende platvlakalgoritme die beste resultate in terme van beide inpakkingsdigtheid en oplossingstyd lewer, maar dat oplossingsverskille tussen die pseudovlakalgoritmes nie so opmerklik vir die VGHIP is as wat die geval met die strookinpakkingsprobleem was nie.
Gomes, Joel Alexandre Roda. "Problema de corte bidimensional : Aplicação a um caso real". Master's thesis, Instituto Superior de Economia e Gestão, 2011. http://hdl.handle.net/10400.5/4540.
Pełny tekst źródłaO problema de corte guilhotina e empacotamento bidimensional rectangular consiste em alocar múltiplas peças pequenas - itens - numa ou mais placas de tamanho maior -objectos - num padrão que minimize o desperdício de matéria-prima. A motivação para a realização deste projecto é resolver um problema real de uma empresa portuguesa tentando, ao mesmo tempo, propor algo novo. Para isso, desenvolvem-se e apresentam-se duas novas heurísticas, a Guillotinable Bottom-Left First Fit Decreasing Height (BLFFDHG) e a Bottom-Left First Fit Decreasing Height (BLFFDH), baseadas na First Fit Decreasing Height (FFDH) e Bottom-up left-justified (BL), em que, após um nível ter sido preenchido com a abordagem da FFDH, e antes de se abrir um novo nível para o próximo rectângulo, o nível actual é exaustivamente examinado, usando a heurística BL, de modo a tentar alocar itens no espaço que sobra entre dois níveis consecutivos. A diferença entre as novas heurísticas reside no facto de uma impor o corte guilhotina. Em ambas nenhuma das peças pode ser rodada ou sobreposta. Só depois de explorado o nível actual é aberto um novo. Os resultados são comparados com heurísticas da literatura, num conjunto de instâncias reais, em corte de roupeiros, e da literatura. As heurísticas propostas são comparadas entre si em termos de tempos de execução e é determinada a complexidade empírica da programação. Os resultados obtidos indicam que os algoritmos BLFFDHG e BLFFDH proporcionam quase sempre melhores soluções que os algoritmos que lhe deram origem e são bastante competitivos em relação às outras heurísticas usadas nos testes. Em termos de tempo de execução, a BLFFDHG revelou-se mais rápida que a BLFFDH, e a complexidade empírica da programação é, para ambas, 0(n3).
The guillotine cutting problem with two-dimensional rectangular packaging consists of allocating small items in one or more bins - objects - with a pattern that minimize the waste of raw materials. The motivation for this project is to solve a real problem of a Portuguese company and, at the same time, try to propose something new. To this aim, two new heuristics are it developed and presented, the Guillotinable Bottom-Left First Fit Decreasing Height (BLFFDHG) and Bottom-Left First Fit Decreasing Height (BLFFDH), based on First Fit Decreasing Height (FFDH) and Bottom-up left-justified (BL), in which, after a level has been filled with the approach of FFDH, and before opening a new level to the next item, the current level is thoroughly examined, using the BL heuristic, so trying to allocate items in the space left between two consecutive levels. The difference between the new heuristics is that one ensures a pattern that is guillotine cuttable, but in none of them the items can be rotated or overlapped. Only after exploring the current level a new one is open. The results are compared, in terms of solution, with heuristics presented in the literature, using a set of real based instances from a wardrobe cutting and literature instances. The proposed heuristics are compared in terms of execution times and its empirically complexity of programming is estimated. The results indicate that the algorithms BLFFDHG and BLFFDH usually provide better solutions than the algorithms FFDH and BL and are quite competitive when compared with other heuristics used in the tests. In terms of execution time, the BLFFDHG proved to be faster than BLFFDH and empirically they both have a complexity of 0(n3).
Rodrigues, Marcos Okamura. "Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062015-111716/.
Pełny tekst źródłaThe irregular strip packing problem consists of cutting a set of two-dimensional pieces from an object of fixed width using the smallest possible length. Despite its economic importance for many industrial sectors, few exact studies have been made on this problem due to its difficulty of resolution. Recently, Toledo et al. (2013) proposed a mixed-integer model to this problem in which the pieces are placed on a grid. This model has worked successfully proving the optimality for instances up to 21 pieces. However, the model has a large number of non-overlapping constraints, which grows quickly in accordance with the discretization resolution and number of distinct pieces. In this work, we propose new mathematical formulations based on this model in order to reduce the number of constraints. In the first approach, we present two reduced models that have shown to be effective for instances with few repetitions of pieces. In the second approach, it was proposed a clique covering model for the problem. This model achieved a greater or equal performance than the literature for all instances, getting an optimal solution for instances up to 28 pieces.
Júnior, Álvaro Luiz Neuenfeldt. "The Two-Dimensional Rectangular Strip Packing Problem". Doctoral thesis, 2017. https://repositorio-aberto.up.pt/handle/10216/109367.
Pełny tekst źródłaJúnior, Álvaro Luiz Neuenfeldt. "The Two-Dimensional Rectangular Strip Packing Problem". Tese, 2017. https://repositorio-aberto.up.pt/handle/10216/109367.
Pełny tekst źródłaLonkar, Aditya Abhay. "Algorithms for Geometric Packing and Covering Problems". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6206.
Pełny tekst źródłaSrinidhi, S. "Heuristic Methods For Job Scheduling In A Heat Treatment Shop To Maximize Kiln Utilization". Thesis, 2007. https://etd.iisc.ac.in/handle/2005/541.
Pełny tekst źródłaSrinidhi, S. "Heuristic Methods For Job Scheduling In A Heat Treatment Shop To Maximize Kiln Utilization". Thesis, 2007. http://hdl.handle.net/2005/541.
Pełny tekst źródłaKsiążki na temat "Strip Packing problem"
Sinclair, Upton. The Jungle. New York, N.Y: Signet Classic, 2001.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle. San Diego, CA: ICON Classics, 2005.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle: An authoritative text, contexts and backgrounds, criticism. New York: Norton, 2003.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle. New York: New American Library, 1990.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle. New York: Modern Library, 2002.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle: The uncensored original edition. Tucson, Ariz: See Sharp Press, 2003.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle. Tucson, AZ: See Sharp Press, 2003.
Znajdź pełny tekst źródłaSinclair, Upton. The Jungle. Chatham: Fictionwise, Inc., 2004.
Znajdź pełny tekst źródłaSinclair, Upton. The jungle. Waterville, Me: Kennebec Large Print, 2010.
Znajdź pełny tekst źródłaSinclair, Upton. The Jungle. Waterville, Me: Thorndike Press, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Strip Packing problem"
Iori, Manuel, Silvano Martello i Michele Monaci. "Metaheuristic Algorithms for the Strip Packing Problem". W Applied Optimization, 159–79. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4613-0233-9_7.
Pełny tekst źródłaBurke, Edmund K., Qiang Guo i Graham Kendall. "A Hyper-Heuristic Approach to Strip Packing Problems". W Parallel Problem Solving from Nature, PPSN XI, 465–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15844-5_47.
Pełny tekst źródłaHawa, Asyl L., Rhyd Lewis i Jonathan M. Thompson. "Heuristics for the Score-Constrained Strip-Packing Problem". W Combinatorial Optimization and Applications, 449–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04651-4_30.
Pełny tekst źródłaNeuenfeldt Júnior, Alvaro, Elsa Silva, A. Miguel Gomes i José Fernando Oliveira. "The Two-Dimensional Strip Packing Problem: What Matters?" W Operational Research, 151–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71583-4_11.
Pełny tekst źródłaBabalik, Ahmet. "Implementation of Bat Algorithm on 2D Strip Packing Problem". W Proceedings in Adaptation, Learning and Optimization, 209–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27000-5_17.
Pełny tekst źródłaVasilyev, Igor, Anton V. Ushakov, Maria V. Barkova, Dong Zhang, Jie Ren i Juan Chen. "Fast Heuristic Algorithms for the Multiple Strip Packing Problem". W Communications in Computer and Information Science, 284–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86433-0_20.
Pełny tekst źródłaZhang, Defu, Yanjuan Liu, Shengda Chen i Xiaogang Xie. "A Meta-heuristic Algorithm for the Strip Rectangular Packing Problem". W Lecture Notes in Computer Science, 1235–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539902_157.
Pełny tekst źródłaThomas, Jaya, i Narendra S. Chaudhari. "Hybrid Approach for 2D Strip Packing Problem Using Genetic Algorithm". W Advances in Computational Intelligence, 566–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38679-4_57.
Pełny tekst źródłaHoffmann, Kirsten. "New Lower Bounds for the Three-Dimensional Strip Packing Problem". W Operations Research Proceedings 2013, 201–7. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07001-8_27.
Pełny tekst źródłaBuchwald, Torsten, i Guntram Scheithauer. "Upper Bounds for Heuristic Approaches to the Strip Packing Problem". W Operations Research Proceedings, 65–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28697-6_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Strip Packing problem"
Domovic, D., i T. Rolich. "Solving strip-packing problem using sequence pair". W 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2015. http://dx.doi.org/10.1109/mipro.2015.7160455.
Pełny tekst źródłaMiranda, Gara, Jesica de Armas, Carlos Segura i Coromoto Leon. "Hyperheuristic codification for the multi-objective 2D Guillotine Strip Packing Problem". W 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5585914.
Pełny tekst źródłaCoelho, Dayanne G., Elizabeth F. Wanner, Sergio R. Souza, Eduardo G. Carrano i Robin C. Purshouse. "A multiobjective evolutionary algorithm for the 2D Guillotine Strip Packing Problem". W 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6256469.
Pełny tekst źródłaAbdelhafiez, Ehab A., i Fahd A. Alturki. "A novel shaking optimization algorithm for two-dimensional irregular strip-packing problem". W 2010 2nd International Conference on Mechanical and Electronics Engineering (ICMEE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmee.2010.5558533.
Pełny tekst źródłaBekrar, Abdelghani, Imed Kacem, Chengbin Chu i Cherif Sadfi. "A Branch and Bound Algorithm for solving the 2D Strip Packing Problem". W 2006 International Conference on Service Systems and Service Management. IEEE, 2006. http://dx.doi.org/10.1109/icsssm.2006.320758.
Pełny tekst źródłaSalto, Carolina, Guillermo Leguizamón, Enrique Alba i Juan M. Molina. "Hybrid Ant Colony System to Solve a 2-Dimensional Strip Packing Problem". W 2008 8th International Conference on Hybrid Intelligent Systems (HIS). IEEE, 2008. http://dx.doi.org/10.1109/his.2008.133.
Pełny tekst źródłaDuanbing Chen, Yan Fu, Mingsheng Shang i Wenqi Huang. "A Quasi-Human Heuristic Algorithm for the 2D Rectangular Strip Packing Problem". W 2008 International Symposium on Information Science and Engineering (ISISE). IEEE, 2008. http://dx.doi.org/10.1109/isise.2008.10.
Pełny tekst źródłaAnggraeny, Fetty Tri, Nanik Suciati i Anny Yuniarti. "Extended local search and polygon grouping for 2D irregular strip packing problem". W 2013 International Conference on ICT for Smart Society (ICISS). IEEE, 2013. http://dx.doi.org/10.1109/ictss.2013.6588054.
Pełny tekst źródłaMatayoshi, Mitsukuni. "The 2D strip packing problem: A new approach with verification by EA". W 2010 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2010. http://dx.doi.org/10.1109/icsmc.2010.5641931.
Pełny tekst źródłaMarat, Mesyagutov,. "Lower Bounds for the 2D Strip Packing Problem: Linear and 1D Contiguous Relaxation". W Information Control Problems in Manufacturing, redaktor Bakhtadze, Natalia, chair Dolgui, Alexandre i Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00337.
Pełny tekst źródła