Artykuły w czasopismach na temat „Stretched Deep Networks (SDN)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Stretched Deep Networks (SDN)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Uhongora, Uakomba, Ronald Mulinde, Yee Wei Law i Jill Slay. "Deep-learning-based Intrusion Detection for Software-defined Networking Space Systems". European Conference on Cyber Warfare and Security 22, nr 1 (19.06.2023): 639–47. http://dx.doi.org/10.34190/eccws.22.1.1085.
Pełny tekst źródłaYaser, Ahmed Latif, Hamdy M. Mousa i Mahmoud Hussein. "Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder". Future Internet 14, nr 8 (12.08.2022): 240. http://dx.doi.org/10.3390/fi14080240.
Pełny tekst źródłaHande, Yogita, i Akkalashmi Muddana. "A Survey on Intrusion Detection System for Software Defined Networks (SDN)". International Journal of Business Data Communications and Networking 16, nr 1 (styczeń 2020): 28–47. http://dx.doi.org/10.4018/ijbdcn.2020010103.
Pełny tekst źródłaShen, Fan, i Levi Perigo. "Dynamic SDN Controller Placement based on Deep Reinforcement Learning". International Journal of Next-Generation Networks 15, nr 1 (30.03.2023): 1–13. http://dx.doi.org/10.5121/ijngn.2023.15101.
Pełny tekst źródłaZhang, Tianyi, i Yong Wang. "RLFAT: A Transformer-Based Relay Link Forged Attack Detection Mechanism in SDN". Electronics 12, nr 10 (15.05.2023): 2247. http://dx.doi.org/10.3390/electronics12102247.
Pełny tekst źródłaLi, Jinlong, Xiaochen Yuan, Jinfeng Li, Guoheng Huang, Ping Li i Li Feng. "CD-SDN: Unsupervised Sensitivity Disparity Networks for Hyper-Spectral Image Change Detection". Remote Sensing 14, nr 19 (26.09.2022): 4806. http://dx.doi.org/10.3390/rs14194806.
Pełny tekst źródłaHarja, Danaswara Prawira, Andrian Rakhmatsyah i Muhammad Arief Nugroho. "Implementasi untuk Meningkatkan Keamanan Jaringan Menggunakan Deep Packet Inspection pada Software Defined Networks". Indonesian Journal on Computing (Indo-JC) 4, nr 1 (22.03.2019): 133. http://dx.doi.org/10.21108/indojc.2019.4.1.286.
Pełny tekst źródłaZhang, Lianming, Yong Lu, Dian Zhang, Haoran Cheng i Pingping Dong. "DSOQR: Deep Reinforcement Learning for Online QoS Routing in SDN-Based Networks". Security and Communication Networks 2022 (29.11.2022): 1–11. http://dx.doi.org/10.1155/2022/4457645.
Pełny tekst źródłaChaganti, Rajasekhar, Wael Suliman, Vinayakumar Ravi i Amit Dua. "Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks". Information 14, nr 1 (9.01.2023): 41. http://dx.doi.org/10.3390/info14010041.
Pełny tekst źródłaLei, Kai, Yuzhi Liang i Wei Li. "Congestion Control in SDN-Based Networks via Multi-Task Deep Reinforcement Learning". IEEE Network 34, nr 4 (lipiec 2020): 28–34. http://dx.doi.org/10.1109/mnet.011.1900408.
Pełny tekst źródłaFu, Qiongxiao, Enchang Sun, Kang Meng, Meng Li i Yanhua Zhang. "Deep Q-Learning for Routing Schemes in SDN-Based Data Center Networks". IEEE Access 8 (2020): 103491–99. http://dx.doi.org/10.1109/access.2020.2995511.
Pełny tekst źródłaPei, Jianing, Peilin Hong, Miao Pan, Jiangqing Liu i Jingsong Zhou. "Optimal VNF Placement via Deep Reinforcement Learning in SDN/NFV-Enabled Networks". IEEE Journal on Selected Areas in Communications 38, nr 2 (luty 2020): 263–78. http://dx.doi.org/10.1109/jsac.2019.2959181.
Pełny tekst źródłaUmair, Muhammad Basit, Zeshan Iqbal, Farrukh Zeeshan Khan, Muhammad Attique Khan i Seifedine Kadry. "A Deep Learning Based Method for Network Application Classification in Software-Defined IoT". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 30, nr 03 (czerwiec 2022): 463–77. http://dx.doi.org/10.1142/s0218488522400165.
Pełny tekst źródłaLi, Guoyan, Yihui Shang, Yi Liu i Xiangru Zhou. "A Network Traffic Prediction Model Based on Graph Neural Network in Software-Defined Networking". International Journal of Information Security and Privacy 16, nr 1 (1.01.2022): 1–17. http://dx.doi.org/10.4018/ijisp.309130.
Pełny tekst źródłaXu, Chenglin, Cheng Xu i Bo Li. "Multi-Agent Deep Q-Network Based Dynamic Controller Placement for Node Variable Software-Defined Mobile Edge-Cloud Computing Networks". Mathematics 11, nr 5 (4.03.2023): 1247. http://dx.doi.org/10.3390/math11051247.
Pełny tekst źródłaLei, Fangyuan, Jun Cai, Qingyun Dai i Huimin Zhao. "Deep Learning Based Proactive Caching for Effective WSN-Enabled Vision Applications". Complexity 2019 (2.05.2019): 1–12. http://dx.doi.org/10.1155/2019/5498606.
Pełny tekst źródłaSong, Inseok, Prohim Tam, Seungwoo Kang, Seyha Ros i Seokhoon Kim. "DRL-Based Backbone SDN Control Methods in UAV-Assisted Networks for Computational Resource Efficiency". Electronics 12, nr 13 (6.07.2023): 2984. http://dx.doi.org/10.3390/electronics12132984.
Pełny tekst źródłaShazly, Khadija, Dina A. Salem, Nacereddine Hammami i Ahmed I. B. ElSeddawy. "A Review on Distributed Denial of Service Detection in Software Defined Network". International Journal of Wireless and Ad Hoc Communication 5, nr 2 (2022): 08–18. http://dx.doi.org/10.54216/ijwac.050201.
Pełny tekst źródłaMousa, Amthal K., i Mohammed Najm Abdullah. "An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder and Checkpoint Network". Future Internet 15, nr 8 (19.08.2023): 278. http://dx.doi.org/10.3390/fi15080278.
Pełny tekst źródłaNegera, Worku Gachena, Friedhelm Schwenker, Taye Girma Debelee, Henock Mulugeta Melaku i Yehualashet Megeresa Ayano. "Review of Botnet Attack Detection in SDN-Enabled IoT Using Machine Learning". Sensors 22, nr 24 (14.12.2022): 9837. http://dx.doi.org/10.3390/s22249837.
Pełny tekst źródłaLing, Carlos, Konrad Tollmar i Linus Gisslén. "Using Deep Convolutional Neural Networks to Detect Rendered Glitches in Video Games". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 16, nr 1 (1.10.2020): 66–73. http://dx.doi.org/10.1609/aiide.v16i1.7409.
Pełny tekst źródłaYe, Jin, Xiangyang Cheng, Jian Zhu, Luting Feng i Ling Song. "A DDoS Attack Detection Method Based on SVM in Software Defined Network". Security and Communication Networks 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/9804061.
Pełny tekst źródłaChen, Junyan, Cenhuishan Liao, Yong Wang, Lei Jin, Xiaoye Lu, Xiaolan Xie i Rui Yao. "AQMDRL: Automatic Quality of Service Architecture Based on Multistep Deep Reinforcement Learning in Software-Defined Networking". Sensors 23, nr 1 (30.12.2022): 429. http://dx.doi.org/10.3390/s23010429.
Pełny tekst źródłaMansoor, Amran, Mohammed Anbar, Abdullah Ahmed Bahashwan, Basim Ahmad Alabsi i Shaza Dawood Ahmed Rihan. "Deep Learning-Based Approach for Detecting DDoS Attack on Software-Defined Networking Controller". Systems 11, nr 6 (9.06.2023): 296. http://dx.doi.org/10.3390/systems11060296.
Pełny tekst źródłaChuang, Hsiu-Min, Fanpyn Liu i Chung-Hsien Tsai. "Early Detection of Abnormal Attacks in Software-Defined Networking Using Machine Learning Approaches". Symmetry 14, nr 6 (8.06.2022): 1178. http://dx.doi.org/10.3390/sym14061178.
Pełny tekst źródłaEt. al., Shilpa P. Khedkar,. "A Deep Learning method for effective channel allotment for SDN based IOT". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 2 (10.04.2021): 1721–28. http://dx.doi.org/10.17762/turcomat.v12i2.1508.
Pełny tekst źródłaMAJDOUB, MANEL, ALI EL KAMEL i HABIB YOUSSEF. "DQR: An Efficient Deep Q-Based Routing Approach in Multi-Controller Software Defined WAN (SD-WAN)". Journal of Interconnection Networks 20, nr 04 (grudzień 2020): 2150002. http://dx.doi.org/10.1142/s021926592150002x.
Pełny tekst źródłaKou, Liang, Shanshuo Ding, Ting Wu, Wei Dong i Yuyu Yin. "An Intrusion Detection Model for Drone Communication Network in SDN Environment". Drones 6, nr 11 (4.11.2022): 342. http://dx.doi.org/10.3390/drones6110342.
Pełny tekst źródłaSaleh, Sherine Nagy, i Cherine Fathy. "A Novel Deep-Learning Model for Remote Driver Monitoring in SDN-Based Internet of Autonomous Vehicles Using 5G Technologies". Applied Sciences 13, nr 2 (8.01.2023): 875. http://dx.doi.org/10.3390/app13020875.
Pełny tekst źródłaUllah, Ihtisham, Basit Raza, Sikandar Ali, Irshad Ahmed Abbasi, Samad Baseer i Azeem Irshad. "Software Defined Network Enabled Fog-to-Things Hybrid Deep Learning Driven Cyber Threat Detection System". Security and Communication Networks 2021 (3.12.2021): 1–15. http://dx.doi.org/10.1155/2021/6136670.
Pełny tekst źródłaKhattab M. Ali Alheeti, Abdulkareem Alzahrani, Maha Alamri, Aythem Khairi Kareem i Duaa Al_Dosary. "A Comparative Study for SDN Security Based on Machine Learning". International Journal of Interactive Mobile Technologies (iJIM) 17, nr 11 (7.06.2023): 131–40. http://dx.doi.org/10.3991/ijim.v17i11.39065.
Pełny tekst źródłaHou, Jiacheng, Tianhao Tao, Haoye Lu i Amiya Nayak. "Intelligent Caching with Graph Neural Network-Based Deep Reinforcement Learning on SDN-Based ICN". Future Internet 15, nr 8 (26.07.2023): 251. http://dx.doi.org/10.3390/fi15080251.
Pełny tekst źródłaSaqib, Muhammad, Farrukh Zeeshan Khan, Muneer Ahmed i Raja Majid Mehmood. "A critical review on security approaches to software-defined wireless sensor networking". International Journal of Distributed Sensor Networks 15, nr 12 (grudzień 2019): 155014771988990. http://dx.doi.org/10.1177/1550147719889906.
Pełny tekst źródłaMeng, Xiangli, Lingda Wu i Shaobo Yu. "Research on Resource Allocation Method of Space Information Networks Based on Deep Reinforcement Learning". Remote Sensing 11, nr 4 (21.02.2019): 448. http://dx.doi.org/10.3390/rs11040448.
Pełny tekst źródłaRavi, Vinayakumar, Rajasekhar Chaganti i Mamoun Alazab. "Deep Learning Feature Fusion Approach for an Intrusion Detection System in SDN-Based IoT Networks". IEEE Internet of Things Magazine 5, nr 2 (czerwiec 2022): 24–29. http://dx.doi.org/10.1109/iotm.003.2200001.
Pełny tekst źródłaDing, Pengpeng, Jinguo Li, Liangliang Wang, Mi Wen i Yuyao Guan. "HYBRID-CNN: An Efficient Scheme for Abnormal Flow Detection in the SDN-Based Smart Grid". Security and Communication Networks 2020 (3.08.2020): 1–20. http://dx.doi.org/10.1155/2020/8850550.
Pełny tekst źródłaChen, Yi-Ren, Amir Rezapour, Wen-Guey Tzeng i Shi-Chun Tsai. "RL-Routing: An SDN Routing Algorithm Based on Deep Reinforcement Learning". IEEE Transactions on Network Science and Engineering 7, nr 4 (1.10.2020): 3185–99. http://dx.doi.org/10.1109/tnse.2020.3017751.
Pełny tekst źródłaŻotkiewicz, Mateusz, Wiktor Szałyga, Jaroslaw Domaszewicz, Andrzej Bąk, Zbigniew Kopertowski i Stanisław Kozdrowski. "Artificial Intelligence Control Logic in Next-Generation Programmable Networks". Applied Sciences 11, nr 19 (2.10.2021): 9163. http://dx.doi.org/10.3390/app11199163.
Pełny tekst źródłaSun, Penghao, Zehua Guo, Julong Lan, Junfei Li, Yuxiang Hu i Thar Baker. "ScaleDRL: A Scalable Deep Reinforcement Learning Approach for Traffic Engineering in SDN with Pinning Control". Computer Networks 190 (maj 2021): 107891. http://dx.doi.org/10.1016/j.comnet.2021.107891.
Pełny tekst źródłaChen, Dr Joy Iong Zong, i Dr Smys S. "Social Multimedia Security and Suspicious Activity Detection in SDN using Hybrid Deep Learning Technique". June 2020 2, nr 2 (27.05.2020): 108–15. http://dx.doi.org/10.36548/jitdw.2020.2.004.
Pełny tekst źródłaDey, Samrat Kumar, i Md Mahbubur Rahman. "Effects of Machine Learning Approach in Flow-Based Anomaly Detection on Software-Defined Networking". Symmetry 12, nr 1 (18.12.2019): 7. http://dx.doi.org/10.3390/sym12010007.
Pełny tekst źródłaGuo, Xuancheng, Hui Lin, Zhiyang Li i Min Peng. "Deep-Reinforcement-Learning-Based QoS-Aware Secure Routing for SDN-IoT". IEEE Internet of Things Journal 7, nr 7 (lipiec 2020): 6242–51. http://dx.doi.org/10.1109/jiot.2019.2960033.
Pełny tekst źródłaRizal, Rizal, Martanto Martanto i Yudhistira Arie Wijaya. "ANALISA DATASET SOFTWARE DEFINED NETWORK INTRUSION MENGGUNAKAN ALGORITMA DEEP LEARNING H2O". JATI (Jurnal Mahasiswa Teknik Informatika) 6, nr 2 (31.10.2022): 747–57. http://dx.doi.org/10.36040/jati.v6i2.5724.
Pełny tekst źródłaNovaes, Matheus P., Luiz F. Carvalho, Jaime Lloret i Mario Lemes Proença. "Adversarial Deep Learning approach detection and defense against DDoS attacks in SDN environments". Future Generation Computer Systems 125 (grudzień 2021): 156–67. http://dx.doi.org/10.1016/j.future.2021.06.047.
Pełny tekst źródłaElubeyd, Hani, i Derya Yiltas-Kaplan. "Hybrid Deep Learning Approach for Automatic Dos/DDoS Attacks Detection in Software-Defined Networks". Applied Sciences 13, nr 6 (16.03.2023): 3828. http://dx.doi.org/10.3390/app13063828.
Pełny tekst źródłaKhasawneh, Natheer, Mohammad Fraiwan, Luay Fraiwan, Basheer Khassawneh i Ali Ibnian. "Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks". Sensors 21, nr 17 (3.09.2021): 5940. http://dx.doi.org/10.3390/s21175940.
Pełny tekst źródłaEl Kamel, Ali, Hamdi Eltaief i Habib Youssef. "On-the-fly (D)DoS attack mitigation in SDN using Deep Neural Network-based rate limiting". Computer Communications 182 (styczeń 2022): 153–69. http://dx.doi.org/10.1016/j.comcom.2021.11.003.
Pełny tekst źródłaZhang, Nan, Heikki Hämmäinen i Hannu Flinck. "Cost efficiency of SDN-enabled service function chaining". info 18, nr 5 (8.08.2016): 45–55. http://dx.doi.org/10.1108/info-03-2016-0011.
Pełny tekst źródłaAlonso, Ricardo S., Inés Sittón-Candanedo, Roberto Casado-Vara, Javier Prieto i Juan M. Corchado. "Deep Reinforcement Learning for the Management of Software-Defined Networks and Network Function Virtualization in an Edge-IoT Architecture". Sustainability 12, nr 14 (15.07.2020): 5706. http://dx.doi.org/10.3390/su12145706.
Pełny tekst źródłaMabel John, Prathima, i Rama Mohan Babu Kasturi Nagappasetty. "An intelligent system to detect slow denial of service attacks in software-defined networks". International Journal of Electrical and Computer Engineering (IJECE) 13, nr 3 (1.06.2023): 3099. http://dx.doi.org/10.11591/ijece.v13i3.pp3099-3110.
Pełny tekst źródła