Gotowa bibliografia na temat „Stretched Deep Networks (SDN)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stretched Deep Networks (SDN)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stretched Deep Networks (SDN)"
Uhongora, Uakomba, Ronald Mulinde, Yee Wei Law i Jill Slay. "Deep-learning-based Intrusion Detection for Software-defined Networking Space Systems". European Conference on Cyber Warfare and Security 22, nr 1 (19.06.2023): 639–47. http://dx.doi.org/10.34190/eccws.22.1.1085.
Pełny tekst źródłaYaser, Ahmed Latif, Hamdy M. Mousa i Mahmoud Hussein. "Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder". Future Internet 14, nr 8 (12.08.2022): 240. http://dx.doi.org/10.3390/fi14080240.
Pełny tekst źródłaHande, Yogita, i Akkalashmi Muddana. "A Survey on Intrusion Detection System for Software Defined Networks (SDN)". International Journal of Business Data Communications and Networking 16, nr 1 (styczeń 2020): 28–47. http://dx.doi.org/10.4018/ijbdcn.2020010103.
Pełny tekst źródłaShen, Fan, i Levi Perigo. "Dynamic SDN Controller Placement based on Deep Reinforcement Learning". International Journal of Next-Generation Networks 15, nr 1 (30.03.2023): 1–13. http://dx.doi.org/10.5121/ijngn.2023.15101.
Pełny tekst źródłaZhang, Tianyi, i Yong Wang. "RLFAT: A Transformer-Based Relay Link Forged Attack Detection Mechanism in SDN". Electronics 12, nr 10 (15.05.2023): 2247. http://dx.doi.org/10.3390/electronics12102247.
Pełny tekst źródłaLi, Jinlong, Xiaochen Yuan, Jinfeng Li, Guoheng Huang, Ping Li i Li Feng. "CD-SDN: Unsupervised Sensitivity Disparity Networks for Hyper-Spectral Image Change Detection". Remote Sensing 14, nr 19 (26.09.2022): 4806. http://dx.doi.org/10.3390/rs14194806.
Pełny tekst źródłaHarja, Danaswara Prawira, Andrian Rakhmatsyah i Muhammad Arief Nugroho. "Implementasi untuk Meningkatkan Keamanan Jaringan Menggunakan Deep Packet Inspection pada Software Defined Networks". Indonesian Journal on Computing (Indo-JC) 4, nr 1 (22.03.2019): 133. http://dx.doi.org/10.21108/indojc.2019.4.1.286.
Pełny tekst źródłaZhang, Lianming, Yong Lu, Dian Zhang, Haoran Cheng i Pingping Dong. "DSOQR: Deep Reinforcement Learning for Online QoS Routing in SDN-Based Networks". Security and Communication Networks 2022 (29.11.2022): 1–11. http://dx.doi.org/10.1155/2022/4457645.
Pełny tekst źródłaChaganti, Rajasekhar, Wael Suliman, Vinayakumar Ravi i Amit Dua. "Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks". Information 14, nr 1 (9.01.2023): 41. http://dx.doi.org/10.3390/info14010041.
Pełny tekst źródłaLei, Kai, Yuzhi Liang i Wei Li. "Congestion Control in SDN-Based Networks via Multi-Task Deep Reinforcement Learning". IEEE Network 34, nr 4 (lipiec 2020): 28–34. http://dx.doi.org/10.1109/mnet.011.1900408.
Pełny tekst źródłaRozprawy doktorskie na temat "Stretched Deep Networks (SDN)"
Nasim, Kamraan. "AETOS: An Architecture for Offloading Core LTE Traffic Using Software Defined Networking Concepts". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35085.
Pełny tekst źródłaRasool, Raihan Ur. "CyberPulse: A Security Framework for Software-Defined Networks". Thesis, 2020. https://vuir.vu.edu.au/42172/.
Pełny tekst źródłaKsiążki na temat "Stretched Deep Networks (SDN)"
Martin, Brett. Difficult Men. Faber and Faber Limited, 2013. http://dx.doi.org/10.5040/9780571343409.
Pełny tekst źródłaCzęści książek na temat "Stretched Deep Networks (SDN)"
Tang, Tuan Anh, Des McLernon, Lotfi Mhamdi, Syed Ali Raza Zaidi i Mounir Ghogho. "Intrusion Detection in SDN-Based Networks: Deep Recurrent Neural Network Approach". W Deep Learning Applications for Cyber Security, 175–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13057-2_8.
Pełny tekst źródłaNguyen, Tri Gia, Trung V. Phan, Dinh Thai Hoang, Tu N. Nguyen i Chakchai So-In. "Efficient SDN-Based Traffic Monitoring in IoT Networks with Double Deep Q-Network". W Computational Data and Social Networks, 26–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66046-8_3.
Pełny tekst źródłaRai, Prerna, i Hiren Kumar Deva Sarma. "A Survey on Application of LSTM as a Deep Learning Approach in Traffic Classification for SDN". W Lecture Notes in Networks and Systems, 161–73. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5090-2_16.
Pełny tekst źródłaAlEroud, Ahmed, i George Karabatis. "SDN-GAN: Generative Adversarial Deep NNs for Synthesizing Cyber Attacks on Software Defined Networks". W On the Move to Meaningful Internet Systems: OTM 2019 Workshops, 211–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40907-4_23.
Pełny tekst źródłaXing, Ziyang, Hui Qi, Xiaoqiang Di, Jinyao Liu i Ligang Cong. "Deep Reinforcement Learning Based Congestion Control Mechanism for SDN and NDN in Satellite Networks". W Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 13–29. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34497-8_2.
Pełny tekst źródłaHande, Yogita, i Akkalashmi Muddana. "A Survey on Intrusion Detection System for Software Defined Networks (SDN)". W Research Anthology on Artificial Intelligence Applications in Security, 467–89. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7705-9.ch023.
Pełny tekst źródłaHande, Yogita, i Akkalashmi Muddana. "A Survey on Intrusion Detection System for Software Defined Networks (SDN)". W Research Anthology on Artificial Intelligence Applications in Security, 467–89. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7705-9.ch023.
Pełny tekst źródłaDo, Thi Thu Hien, Ba Truc Le, The Duy Phan, Thi Huong Lan Do, Do Hoang Hien i Van-Hau Pham. "Intrusion Detection with Big Data Analysis in SDN-Enabled Networks". W Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220284.
Pełny tekst źródłaDuy, Phan The, Nghi Hoang Khoa, Hoang Hiep, Nguyen Ba Tuan, Hien Do Hoang, Do Thi Thu Hien i Van-Hau Pham. "A Deep Transfer Learning Approach for Flow-Based Intrusion Detection in SDN-Enabled Network". W Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210031.
Pełny tekst źródłaStreszczenia konferencji na temat "Stretched Deep Networks (SDN)"
Saied, Wejdene, Nihel Ben Youssef Ben Souayeh, Amina Saadaoui i Adel Bouhoula. "Deep and Automated SDN Data Plane Analysis". W 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, 2019. http://dx.doi.org/10.23919/softcom.2019.8903846.
Pełny tekst źródłaTosounidis, Vasileios, Georgios Pavlidis i Ilias Sakellariou. "Deep Q-Learning for Load Balancing Traffic in SDN Networks". W SETN 2020: 11th Hellenic Conference on Artificial Intelligence. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3411408.3411423.
Pełny tekst źródłaXu, Jun, Jingyu Wang, Qi Qi, Haifeng Sun i Bo He. "DEEP NEURAL NETWORKS FOR APPLICATION AWARENESS IN SDN-BASED NETWORK". W 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2018. http://dx.doi.org/10.1109/mlsp.2018.8517088.
Pełny tekst źródłaHande, Yogita, i Akkalakshmi Muddana. "Intrusion Detection System Using Deep Learning for Software Defined Networks (SDN)". W 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2019. http://dx.doi.org/10.1109/icssit46314.2019.8987751.
Pełny tekst źródłaLee, Tsung-Han, Lin-Huang Chang i Chao-Wei Syu. "Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks". W 2020 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2020. http://dx.doi.org/10.1109/iccworkshops49005.2020.9145085.
Pełny tekst źródłaNugraha, Beny, i Rathan Narasimha Murthy. "Deep Learning-based Slow DDoS Attack Detection in SDN-based Networks". W 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2020. http://dx.doi.org/10.1109/nfv-sdn50289.2020.9289894.
Pełny tekst źródłaTang, Tuan A., Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi i Mounir Ghogho. "Deep Recurrent Neural Network for Intrusion Detection in SDN-based Networks". W 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, 2018. http://dx.doi.org/10.1109/netsoft.2018.8460090.
Pełny tekst źródłaSwain, Pravati, Uttam Kamalia, Raj Bhandarkar i Tejas Modi. "CoDRL: Intelligent Packet Routing in SDN Using Convolutional Deep Reinforcement Learning". W 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, 2019. http://dx.doi.org/10.1109/ants47819.2019.9118112.
Pełny tekst źródłaTian, Feng, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu i Zhi-Li Zhang. "Accelerating Distributed Deep Learning using Multi-Path RDMA in Data Center Networks". W SOSR '21: The ACM SIGCOMM Symposium on SDN Research. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3482898.3483363.
Pełny tekst źródłaSu, Jing, Suku Nair i Leo Popokh. "Optimal Resource Allocation in SDN/NFV-Enabled Networks via Deep Reinforcement Learning". W 2022 IEEE Ninth International Conference on Communications and Networking (ComNet). IEEE, 2022. http://dx.doi.org/10.1109/comnet55492.2022.9998475.
Pełny tekst źródła