Gotowa bibliografia na temat „Stress proteins”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stress proteins”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stress proteins"
Srivastava, K. K., i Ganju Lilly. "Stress proteins". Indian Journal of Clinical Biochemistry 7, nr 1 (styczeń 1992): 11–14. http://dx.doi.org/10.1007/bf02867695.
Pełny tekst źródłaDonaldson, Laurie. "Don't stress, proteins". Materials Today 14, nr 7-8 (lipiec 2011): 305. http://dx.doi.org/10.1016/s1369-7021(11)70154-7.
Pełny tekst źródłaGehrmann, M., D. Schilling, M. Molls i G. Multhoff. "Radiation induced stress proteins". Int. Journal of Clinical Pharmacology and Therapeutics 48, nr 07 (1.07.2010): 492–93. http://dx.doi.org/10.5414/cpp48492.
Pełny tekst źródłaKOBAYASHI, Kazuko. "Rolls of Stress Proteins." Zen Nihon Shinkyu Gakkai zasshi (Journal of the Japan Society of Acupuncture and Moxibustion) 47, nr 2 (1997): 37–41. http://dx.doi.org/10.3777/jjsam.47.37.
Pełny tekst źródłaMollenhauer, Juergen. "STRESS PROTEINS IN MEDICINE". Shock 5, nr 5 (maj 1996): 390. http://dx.doi.org/10.1097/00024382-199605000-00016.
Pełny tekst źródłaGraven, Krista K., i Harrison W. Farber. "Endothelial hypoxic stress proteins". Kidney International 51, nr 2 (luty 1997): 426–37. http://dx.doi.org/10.1038/ki.1997.57.
Pełny tekst źródłaWinrow, V. "Stress proteins in medicine". Annals of the Rheumatic Diseases 55, nr 5 (1.05.1996): 287. http://dx.doi.org/10.1136/ard.55.5.287.
Pełny tekst źródłaPOLLA, BARBARA S., MARIA BACHELET, GIULIANO ELIA i M. GABRIELLA SANTORO. "Stress Proteins in Inflammationa". Annals of the New York Academy of Sciences 851, nr 1 STRESS OF LIF (czerwiec 1998): 75–85. http://dx.doi.org/10.1111/j.1749-6632.1998.tb08979.x.
Pełny tekst źródłaRoma, Paola, i Alberico Luigi Catapano. "Stress proteins and atherosclerosis". Atherosclerosis 127, nr 2 (grudzień 1996): 147–54. http://dx.doi.org/10.1016/s0021-9150(96)05952-7.
Pełny tekst źródłaBlumenthal, Elliott J. "Stress proteins in medicine". Trends in Endocrinology & Metabolism 7, nr 5 (lipiec 1996): 193. http://dx.doi.org/10.1016/1043-2760(96)00059-8.
Pełny tekst źródłaRozprawy doktorskie na temat "Stress proteins"
Ibrahim, Yasser Musa. "Stress response proteins in Streptococcus pneumoniae". Thesis, University of Glasgow, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412962.
Pełny tekst źródłaBradley, Dominic. "The universal stress proteins of bacteria". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6946.
Pełny tekst źródłaGregory, Mary Sarah-Jane, i n/a. "Thioredoxin and Oxidative Stress". Griffith University. School of Health Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040301.082639.
Pełny tekst źródłaGregory, Mary Sarah-Jane. "Thioredoxin and Oxidative Stress". Thesis, Griffith University, 2004. http://hdl.handle.net/10072/367183.
Pełny tekst źródłaThesis (Masters)
Master of Philosophy (MPhil)
School of Health Sciences
Full Text
Fladvad, Malin. "Structure and function in c-Myc and Grx4 : two key proteins involved in transcriptional activation and oxidative stress /". Stockholm, 2006. http://diss.kib.ki.se/2006/91-7357-007-9/.
Pełny tekst źródłaNaim, Adnan. "The Role of G3BPs in the Stress Response Pathway". Thesis, Griffith University, 2016. http://hdl.handle.net/10072/367499.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Doherty, Sean. "Apoplastic proteins, enzymes and radicals". Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4376/.
Pełny tekst źródłaAmara, Imen. "Abiotic stress in plants: Late Embryogenesis Abundant proteins". Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/83820.
Pełny tekst źródłaLas proteínas LEA, originalmente fueron descritas en las semillas de algodón; se acumulan en grandes cantidades en estructuras tolerantes a la desecación (semillas, polen) y en tejidos vegetativos sometidos a estrés abiótico, sequía, salinidad y frío. También se hallan en organismos anidrobióticos, en plantas de resurrección, algunos invertebrados y microorganismos. La presencia de proteínas LEA se correlaciona con la adquisición de tolerancia a la desecación. Desde un principio se les atribuyó un papel en las respuestas de las plantas en la adaptación al estrés (revisado en Bartels and Salamini 2001, Tunnacliffe 2007, Shih et al. 2010, Tunnacliffe 2010, Hand et al. 2011). Las proteínas LEA se clasifican en diversos grupos en función de dominios y secuencias de aminoácidos específicos (Wise 2010, Batagglia et al 2008, Bies-Ethève et al 2008). Los grupos 1, 2 y 3 son los más relevantes ya que abarcan la mayoría de las proteínas de la familia LEA. Una característica general de estas proteínas es su elevada hidrofilicidad, alto contenido de aminoácidos cargados y su falta de estructura en estado hidratado. A pesar de encontrarse mayoritariamente en forma de “random coil”, algunas adquieren un cierto grado de estructura durante la deshidratación o en la presencia de agentes promotores de α-hélices (Shih et al. 2010, Hand et al. 2011). A nivel celular se han hallado en todas las localizaciones, citosol, núcleo, nucleolo, mitocondria, cloroplasto, vacuola, retículo endoplásmico, peroxisoma y membrana plasmática, donde se supone ejercen su función protectora frente al estrés (Tunnacliffe and Wise 2007, Hundertmark and Hincha 2008). En relación a las modificaciones post-traduccionales, algunas se hallan fosforiladas (Jiang and Wang 2004; Plana et al. 1991, Heyen et al. 2002, Rohrig et al. 2006). Los efectos protectores de las varias proteínas LEA se han demostrado mediante ensayos in vitro y en aproximaciones transgénicas que han dado lugar a fenotipos resistentes a la sequía, sal y frío. Por lo general, se considera que estas proteínas contribuyen a la protección y a la estabilización de macromoléculas y estructuras celulares en las respuestas de adaptación al estrés en plantas; sin embargo, sus funciones específicas aún no han sido esclarecidas. A nivel molecular se ha propuesto que las funciones de las proteínas LEA pueden ser variadas: estabilización y renaturalización de proteínas, mantenimiento de membranas, en combinación, o no, con azúcares, tampones de hidratación (substitución de moléculas de agua), afinidad por iones y función antioxidante (Tunnacliffe and Wise 2007, Shih et al. 2010, Batagglia et al. 2008). Para finalizar, diremos que los objetivos principales de esta tesis consisten en ampliar los conocimientos sobre las proteínas LEA y sus funciones relativas a la tolerancia a la sequía. Los resultados están presentados en forma de capítulos.
Kolodziejski, Jakub. "Twist proteins as oxidative and hypoxic stress regulators". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS008/document.
Pełny tekst źródłaTwist1 and Twist2 are related transcription factors that play major roles both during embryonic development and in several pathologies, including cancer. Twists' oncogenic potential arises from a combination of their multiple functions in development. Notably, both Twist induce epithelial-to mesenchymal transition, thus promoting tumour invasiveness and possibly conferring to cells self-renewal properties. Furthermore, through disruption of both Rb- and p53-driven pathways, Twist override two major oncogene-induced fail-safe programs, namely senescence and apoptosis, thereby promoting malignant conversion. Twist has also been reported to participate in acquisition of drug resistance and in promotion of neo-angiogenesis.Current knowledge of pleiotropic activities of Twist prompted us to postulate that these factors may be major regulators of stress response. Cancer cells survive and grow within a continuously changing environment that creates multiple stresses to which they must adapt in order to survive and strive. Such adaptations often give rise to the acquisition of an aggressive phenotype. Consistent with this hypothesis, we recently unveiled new activities of Twist proteins that are related to stress response. We have shown that Twist regulates response to oxidative stress, a condition exacerbated in cancer by stimuli such as inflammation, increased cellular metabolism and changes in tumour oxygenation. Our work has contributed to the understanding of molecular mechanisms through which Twist diminishes cellular ROS and thus participates in the escape from apoptosis and senescence. In the first part of my thesis, I worked on the antioxidant activity of Twist and described its molecular mechanisms.The second part of my work addressed the impact of Twist proteins on cellular response to hypoxia that is insufficient oxygen supply, frequently found in solid tumours. Cellular response to hypoxic stress relies on stabilization and activation of HIF1α, a key transcriptional mediator of the hypoxic response, regulating numerous genes involved in glucose metabolism, oxygen transport, angiogenesis, cell growth and apoptosis. HIF1α is beneficial for cancer cells in response to short hypoxic episodes, however its sustained activation in case of prolonged hypoxia may push cancer cells towards apoptosis. In this context, we have shown that Twist protects cancer cells from hypoxia-induced apoptosis. We have discovered HIF1α and Twist physically interact, suggesting a possible mechanistic basis for Twist's protective effect. These results led us to postulate that Twist plays a role in cellular response to hypoxia and thus participates in cancer cell adaptation and acquisition of aggressive phenotypes triggered by lack of oxygen.Our results reinforce the notion that Twist factors are major cellular stress modulators that might be important for adaptation of cancer cells to changing conditions in the process of tumour progression
Di, Paolo Tiziano. "Stress response in Entamoeba histolytica". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68169.
Pełny tekst źródłaKsiążki na temat "Stress proteins"
Schlesinger, Milton J., M. Gabriella Santoro i Enrico Garaci, red. Stress Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75815-7.
Pełny tekst źródłaLatchman, David S., red. Stress Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2.
Pełny tekst źródłaArrigo, André-Patrick, i W. E. G. Müller, red. Small Stress Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56348-5.
Pełny tekst źródłaCalderwood, Stuart K., red. Cell Stress Proteins. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-39717-7.
Pełny tekst źródłaK, Calderwood Stuart, red. Cell stress proteins. New York: Springer, 2007.
Znajdź pełny tekst źródła1953-, Eden Willem van, i Young Douglas B, red. Stress proteins in medicine. New York: M. Dekker, 1996.
Znajdź pełny tekst źródłaAsea, Alexzander A. A., i Punit Kaur, red. Heat Shock Proteins and Stress. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90725-3.
Pełny tekst źródłaJ, Schlesinger Milton, Santoro M. G i Garaci E, red. Stress proteins: Induction and function. Berlin: Springer-Verlag, 1990.
Znajdź pełny tekst źródłaMarius, Locke, i Noble Earl George, red. Exercise and stress response: The role of stress proteins. Boca Raton, Fla: CRC Press, 2002.
Znajdź pełny tekst źródłaSimon, Stéphanie. Small stress proteins and human diseases. Hauppauge, N.Y: Nova Science, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Stress proteins"
Pfanner, Nikolaus. "Mitochondrial Protein Import: Unfolding and Refolding of Precursor Proteins". W Stress Proteins, 71–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75815-7_6.
Pełny tekst źródłaLatchman, D. S. "Stress Proteins: An Overview". W Stress Proteins, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_1.
Pełny tekst źródłaShi, Y., i R. I. Morimoto. "Autoregulation of the Heat Shock Response". W Stress Proteins, 225–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_10.
Pełny tekst źródłaBrown, I. R., i F. R. Sharp. "The Cellular Stress Gene Response in Brain". W Stress Proteins, 243–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_11.
Pełny tekst źródłaCarroll, R., i D. M. Yellon. "Heat Stress Proteins and Their Relationship to Myocardial Protection". W Stress Proteins, 265–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_12.
Pełny tekst źródłaBachelet, M., G. Multhoff, M. Vignola, K. Himeno i B. S. Polla. "Heat Shock Proteins in Inflammation and Immunity". W Stress Proteins, 281–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_13.
Pełny tekst źródłaMorange, M. "Heat Shock Proteins in Embryonic Development". W Stress Proteins, 305–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_14.
Pełny tekst źródłavan Eden, W. "Heat Shock Proteins in Rheumatoid Arthritis". W Stress Proteins, 329–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_15.
Pełny tekst źródłaNewton, S. G., i D. M. Altmann. "Heat Shock Protein 60 and Type I Diabetes". W Stress Proteins, 347–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_16.
Pełny tekst źródłaRistori, G., C. Montesperelli, D. Kovacs, G. Borsellino, L. Battistini, C. Buttinelli, C. Pozzilli, C. Mattei i M. Salvetti. "Heat Shock Proteins and Multiple Sclerosis". W Stress Proteins, 363–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58259-2_17.
Pełny tekst źródłaStreszczenia konferencji na temat "Stress proteins"
Kaazempur-Mofrad, Mohammad R., Peter J. Mack, Helene Karcher, Javad Golji i Roger G. Kamm. "Stress-Induced Mechanotransduction: Some Preliminaries". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43215.
Pełny tekst źródłaSampson, Alana C., Eunna Chung i Marissa Nichole Rylander. "Thermal Stress Conditioning to Induce Osteogenic Protein Expression for Bone Regeneration". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80940.
Pełny tekst źródłaKoroleva, E. S., P. V. Kuzmitskaya i O. Yu Urbanovich. "IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL". W SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.
Pełny tekst źródłaKoroleva, E. S., P. V. Kuzmitskaya i O. Yu Urbanovich. "IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL". W SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.
Pełny tekst źródłaChung, Eunna, i Marissa Nichole Rylander. "Effects of Growth Factors and Stress Conditioning on the Induction of Heat Shock Proteins and Osteogenesis". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206662.
Pełny tekst źródłaLi, Dai-xi, i Xiaoming He. "Desiccation Dependent Structure and Stability of an Anhydrobiotic Nematode Late Embryogenesis Abundant (LEA) Protein". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206862.
Pełny tekst źródłaRamirez, Angelica Maria, Begoña Calvo Calzada i Jorge Grasa. "The Effect of the Fascia on the Stress Distribution in Skeletal Muscle". W ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19696.
Pełny tekst źródłaMorinobu, M., M. Ishijima, S. R. Rittling, K. Tsuji, H. Yamamoto, A. Nifuji, D. T. Denhardt i M. Noda. "OSTEOPONTIN-DEFICIENCY REDUCES BONE FORMATION UNDER MECHANICAL STRESS". W 3rd International Conference on Osteopontin and SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) Proteins, 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.319.
Pełny tekst źródłaChung, Eunna, i Marissa Nichole Rylander. "Multi-Stress Conditioning Can Synergisticly Enhance Production of Osteogenic Markers and Heat Shock Proteins". W ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19511.
Pełny tekst źródłaSanchez-Lopez, Elsa, Laura Menchén, Esther Seco, Teresa Gómez del Pulgar, Juan Carlos Lacal i Arancha Cebrián. "Abstract 2644: Inhibition of choline kinase increases endoplasmic reticulum stress proteins". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2644.
Pełny tekst źródłaRaporty organizacyjne na temat "Stress proteins"
Christopher, David A., i Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, maj 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Pełny tekst źródłaVierling, E. Role of HSP100 proteins in plant stress tolerance. Final technical report. Office of Scientific and Technical Information (OSTI), sierpień 1998. http://dx.doi.org/10.2172/638185.
Pełny tekst źródłaSadot, Einat, Christopher Staiger i Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, wrzesień 2011. http://dx.doi.org/10.32747/2011.7592652.bard.
Pełny tekst źródłaBercovier, Herve, Raul Barletta i Shlomo Sela. Characterization and Immunogenicity of Mycobacterium paratuberculosis Secreted and Cellular Proteins. United States Department of Agriculture, styczeń 1996. http://dx.doi.org/10.32747/1996.7573078.bard.
Pełny tekst źródłaBlum, Abraham, Henry T. Nguyen i N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, sierpień 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Pełny tekst źródłaAmir, Rachel, David J. Oliver, Gad Galili i Jacline V. Shanks. The Role of Cysteine Partitioning into Glutathione and Methionine Synthesis During Normal and Stress Conditions. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7699850.bard.
Pełny tekst źródłaGuy, Charles, Gozal Ben-Hayyim, Gloria Moore, Doron Holland i Yuval Eshdat. Common Mechanisms of Response to the Stresses of High Salinity and Low Temperature and Genetic Mapping of Stress Tolerance Loci in Citrus. United States Department of Agriculture, maj 1995. http://dx.doi.org/10.32747/1995.7613013.bard.
Pełny tekst źródłaNechushtai, Rachel, i Parag Chitnis. Role of the HSP70 Homologue from Chloroplasts in the Assembly of the Photosynthetic Apparatus. United States Department of Agriculture, lipiec 1993. http://dx.doi.org/10.32747/1993.7568743.bard.
Pełny tekst źródłaFromm, A., Avihai Danon i Jian-Kang Zhu. Genes Controlling Calcium-Enhanced Tolerance to Salinity in Plants. United States Department of Agriculture, marzec 2003. http://dx.doi.org/10.32747/2003.7585201.bard.
Pełny tekst źródłaDroby, Samir, Michael Wisniewski, Ron Porat i Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, grudzień 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Pełny tekst źródła