Artykuły w czasopismach na temat „STRESS ANALYSIS OF RAIL WHEEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „STRESS ANALYSIS OF RAIL WHEEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Tie, Jun Zhang i Chuan Xi Sun. "The Profile Analysis of Wheels and Rails of Different Wear Stages for Heavy-Haul Wagons". Applied Mechanics and Materials 602-605 (sierpień 2014): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.291.
Pełny tekst źródłaMa, He, Jun Zhang i Xiu Juan Zhang. "The Calculation and Analysis for the Independent Wheels of Tramcar". Applied Mechanics and Materials 577 (lipiec 2014): 297–300. http://dx.doi.org/10.4028/www.scientific.net/amm.577.297.
Pełny tekst źródłaMilošević, Miloš, Aleksandar Miltenović, Milan Banić i Miša Tomić. "DETERMINATION OF RESIDUAL STRESS IN THE RAIL WHEEL DURING QUENCHING PROCESS BY FEM SIMULATION". Facta Universitatis, Series: Mechanical Engineering 15, nr 3 (9.12.2017): 413. http://dx.doi.org/10.22190/fume170206029m.
Pełny tekst źródłaLiu, Kai, i Lin Jing. "A finite element analysis-based study on the dynamic wheel–rail contact behaviour caused by wheel polygonization". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, nr 10 (4.12.2019): 1285–98. http://dx.doi.org/10.1177/0954409719891549.
Pełny tekst źródłaKumar, S., i S. P. Singh. "Rail Head Geometry, Rail Rolling and Wheel-Rail Contact Tilting Analysis for Heavy Axle Loads". Journal of Engineering for Industry 111, nr 4 (1.11.1989): 375–81. http://dx.doi.org/10.1115/1.3188775.
Pełny tekst źródłaKumar, S., i S. P. Singh. "Heavy Axle Load Wheel-Rail Contact Stresses and Their Tread-Crown Curvature Relationships". Journal of Engineering for Industry 111, nr 4 (1.11.1989): 382–87. http://dx.doi.org/10.1115/1.3188776.
Pełny tekst źródłaAxinte, Tiberiu. "Analysis of Rails of a Ferry Boat under Wheels Contact Loading". Advanced Materials Research 837 (listopad 2013): 739–44. http://dx.doi.org/10.4028/www.scientific.net/amr.837.739.
Pełny tekst źródłaGu, Shao Jie, Xin Wen Yang i Song Liang Lian. "An Analysis of 3-D Wheel-Rail Contact Stress under Heavy Axle Load Using Non-Linear Finite Element Method". Applied Mechanics and Materials 638-640 (wrzesień 2014): 1128–34. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1128.
Pełny tekst źródłaAkeel, N. A., M. A. Aziman, Zainuddin Sajuri, Ahmad Kamal Ariffin i A. W. Ikhsan. "Identification of Damages and Stress Analysis of Rail/Wheel Rolling Contact Region". Key Engineering Materials 462-463 (styczeń 2011): 1152–57. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1152.
Pełny tekst źródłaWu, Feng Qi, Jin Zhang i Wen Qing Yao. "Crane Wheel-Rail Contact Stresses Research Based on Experimental Test and Finite Element Analysis". Applied Mechanics and Materials 496-500 (styczeń 2014): 662–65. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.662.
Pełny tekst źródłaHan, Liangliang, Lin Jing i Longmao Zhao. "Finite element analysis of the wheel–rail impact behavior induced by a wheel flat for high-speed trains: The influence of strain rate". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232, nr 4 (18.04.2017): 990–1004. http://dx.doi.org/10.1177/0954409717704790.
Pełny tekst źródłaSong, Du, Zhang i Sun. "Evaluating the Effect of Wheel Polygons on Dynamic Track Performance in High-Speed Railway Systems Using Co-Simulation Analysis". Applied Sciences 9, nr 19 (4.10.2019): 4165. http://dx.doi.org/10.3390/app9194165.
Pełny tekst źródłaZhou, Jian Hua, Yu Ji, An Chao Ren i You Deng Zhang. "Analysis of the Generation Cause of Scale Shelling Defects on Running Surface of 60kg/m U71Mn Rail". Advanced Materials Research 291-294 (lipiec 2011): 1062–68. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1062.
Pełny tekst źródłaSeo, Jung Won, Byeong Choon Goo, Heung Chai Chung, Jae Boong Choi i Young Jin Kim. "The Effects of Residual Stress of Contact Fatigue Life for Railway Wheels". Key Engineering Materials 297-300 (listopad 2005): 115–21. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.115.
Pełny tekst źródłaChen, Dilai, Gang Shen, Xin Mao i Buchen Chen. "A Design Method for Rail Profiles in Switch Panel of Turnout Based on the Contact Stress Analysis". Shock and Vibration 2020 (9.10.2020): 1–15. http://dx.doi.org/10.1155/2020/8575498.
Pełny tekst źródłaHan, Feng, Hao Wei i Yang Liu. "Thermal–Mechanical Coupling Analysis of Wheel–Rail Sliding Friction under Two-Point Contact Conditions". Lubricants 11, nr 5 (22.05.2023): 232. http://dx.doi.org/10.3390/lubricants11050232.
Pełny tekst źródłaTiago Cruz Tepedino, Marcelo Leite Ribeiro i Gustavo Tressia. "Effect of rail cant on stress distribution". World Journal of Advanced Engineering Technology and Sciences 9, nr 1 (30.06.2023): 372–86. http://dx.doi.org/10.30574/wjaets.2023.9.1.0184.
Pełny tekst źródłaKumar, S., P. K. Krishnamoorthy i D. L. Prasanna Rao. "Influence of Car Tonnage and Wheel Adhesion on Rail and Wheel Wear: A Laboratory Study". Journal of Engineering for Industry 108, nr 1 (1.02.1986): 48–58. http://dx.doi.org/10.1115/1.3187041.
Pełny tekst źródłaCoo, Byeong-Choo, i Young-Jin Lee. "Railway Vehicle Wheel Restoration by Submerged Arc Welding and Its Characterization". Sci 1, nr 1 (17.04.2019): 25. http://dx.doi.org/10.3390/sci1010025.
Pełny tekst źródłaCoo, Byeong-Choo, i Young-Jin Lee. "Railway Vehicle Wheel Restoration by Submerged Arc Welding and Its Characterization". Sci 1, nr 2 (4.09.2019): 52. http://dx.doi.org/10.3390/sci1020052.
Pełny tekst źródłaCoo, Byeong-Choo, i Young-Jin Lee. "Railway Vehicle Wheel Restoration by Submerged Arc Welding and Its Characterization". Sci 2, nr 2 (14.05.2020): 33. http://dx.doi.org/10.3390/sci2020033.
Pełny tekst źródłaHuo, Junzhou, Hanyang Wu, Dong Zhu, Wei Sun, Liping Wang i Jianghui Dong. "The rigid–flexible coupling dynamic model and response analysis of bearing–wheel–rail system under track irregularity". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, nr 21 (12.12.2017): 3859–80. http://dx.doi.org/10.1177/0954406217745336.
Pełny tekst źródłaLisowski, Filip, i Edward Lisowski. "Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles". Applied Sciences 10, nr 14 (8.07.2020): 4717. http://dx.doi.org/10.3390/app10144717.
Pełny tekst źródłaKossov, V. S., A. V. Savin i O. G. Krasnov. "On the Issue of Determining Relative Rail Rolling Contact Fatigue Damageability". World of Transport and Transportation 19, nr 1 (8.09.2021): 6–17. http://dx.doi.org/10.30932/1992-3252-2021-19-1-06-17.
Pełny tekst źródłaSung, Ki Deug, Tae Hyeok Yun, Geun Sun Lee i Ki Hong Kim. "A Study on the Stress Analysis and Optimum Design of S-Shape Wheel for Rolling Stock". International Journal of Modern Physics B 17, nr 08n09 (10.04.2003): 1953–58. http://dx.doi.org/10.1142/s0217979203019939.
Pełny tekst źródłaWang, Zhiqiang, i Zhenyu Lei. "Analysis of Rail Corrugation Characteristics on High-Speed Rail Based on Transient Finite Element Method". International Journal of Acoustics and Vibration 26, nr 3 (30.09.2021): 231–39. http://dx.doi.org/10.20855/ijav.2021.26.31778.
Pełny tekst źródłaPeixoto, D. F. C., L. A. A. Ferreira i Paulo Manuel Salgado Tavares de Castro. "Application of the Dang Van Fatigue Criterion to the Rail/Wheel Contact Problem". Materials Science Forum 636-637 (styczeń 2010): 1178–85. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1178.
Pełny tekst źródłaXiao, Qian, Yihang Yang, Chao Chang i Dongzhe Li. "Monitoring and Evaluation of High-Speed Railway Turnout Grinding Effect Based on Field Test and Simulation". Applied Sciences 13, nr 16 (11.08.2023): 9177. http://dx.doi.org/10.3390/app13169177.
Pełny tekst źródłaGoo, Byeong Choon, i Jung Won Seo. "Finite Element Analysis of the Rolling Contact Fatigue Life of Railcar Wheels". Materials Science Forum 575-578 (kwiecień 2008): 1461–66. http://dx.doi.org/10.4028/www.scientific.net/msf.575-578.1461.
Pełny tekst źródłaKulkarni, S. M., G. T. Hahn, C. A. Rubin i V. Bhargava. "Elasto-Plastic Finite Element Analysis of Repeated Three-Dimensional, Elliptical Rolling Contact With Rail Wheel Properties". Journal of Tribology 113, nr 3 (1.07.1991): 434–41. http://dx.doi.org/10.1115/1.2920643.
Pełny tekst źródłaPun, Chung Lun, Qian Hua Kan, Peter J. Mutton, Guo Zheng Kang i Wen Yi Yan. "On the Evaluation of the Stress State in Rail Head for Assessing Fatigue Resistance". Advanced Materials Research 891-892 (marzec 2014): 1157–62. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.1157.
Pełny tekst źródłaJelila, Y. D., H. G. Lemu, W. Pamuła i G. G. Sirata. "Fatigue life analysis of wheel-rail contacts at railway turnouts using finite element modelling approach." IOP Conference Series: Materials Science and Engineering 1201, nr 1 (1.11.2021): 012047. http://dx.doi.org/10.1088/1757-899x/1201/1/012047.
Pełny tekst źródłaKrotov, Sergey, i Dmitriy Kononov. "Analysis of Contact Zone of Railway Wheel and Rail". Proceedings of Petersburg Transport University 19, nr 2 (22.06.2022): 221–31. http://dx.doi.org/10.20295/1815-588x-2022-19-2-221-231.
Pełny tekst źródłaAxinte, Tiberiu. "Finite Elements Analysis of the Rail-Wheel Rolling Contact". Advanced Materials Research 1036 (październik 2014): 559–63. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.559.
Pełny tekst źródłaLack, Tomáš, i Juraj Gerlici. "Y25 freight car bogie models properties analysis by means of computer simulations". MATEC Web of Conferences 157 (2018): 03014. http://dx.doi.org/10.1051/matecconf/201815703014.
Pełny tekst źródłaYin, Hao, Yu Qian, J. Riley Edwards i Kaijun Zhu. "Investigation of Relationship between Train Speed and Bolted Rail Joint Fatigue Life using Finite Element Analysis". Transportation Research Record: Journal of the Transportation Research Board 2672, nr 10 (1.07.2018): 85–95. http://dx.doi.org/10.1177/0361198118784382.
Pełny tekst źródłaSeo, Jung Won, Hyun Mu Hur, Sung Tae Kwon, Jae Boong Choi i Young Jin Kim. "Effects of Residual Stress and Traction Force on the Contact Fatigue Life of Railway Wheels". Key Engineering Materials 326-328 (grudzień 2006): 1067–70. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1067.
Pełny tekst źródłaSirata, G. G., H. G. Lemu, K. Waclawiak i Y. D. Jelila. "Study of rail-wheel contact problem by analytical and numerical approaches". IOP Conference Series: Materials Science and Engineering 1201, nr 1 (1.11.2021): 012035. http://dx.doi.org/10.1088/1757-899x/1201/1/012035.
Pełny tekst źródłaAxinte, Tiberiu. "Hertz Contact Problem between Wheel and Rail". Advanced Materials Research 837 (listopad 2013): 733–38. http://dx.doi.org/10.4028/www.scientific.net/amr.837.733.
Pełny tekst źródłaWatanabe, Tsutomu, Keiichi Goto, Kodai Matsuoka i Shintaro Minoura. "Validation of a dynamic wheel load factor and the influence of various track irregularities on the dynamic response of prestressed concrete sleepers". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, nr 10 (9.12.2019): 1275–84. http://dx.doi.org/10.1177/0954409719891655.
Pełny tekst źródłaWen, Zefeng, Lei Wu, Wei Li, Xuesong Jin i Minhao Zhu. "Three-dimensional elastic–plastic stress analysis of wheel–rail rolling contact". Wear 271, nr 1-2 (maj 2011): 426–36. http://dx.doi.org/10.1016/j.wear.2010.10.001.
Pełny tekst źródłaGenshu, Tong, i Xuan Zejun. "Revisiting the bearing stresses in webs of crane runway girders under wheel loads". Advances in Structural Engineering 21, nr 12 (20.02.2018): 1792–801. http://dx.doi.org/10.1177/1369433218755520.
Pełny tekst źródłaAkeel, Norie, Zainuddin Sajuri, Ahmad Kamal Ariffin i Mohamed M. Abdulrazzaq. "Three Dimensional Simulations on Stress Distribution and Fatigue Damage Life of Wheel/Rail Contact Region". Advanced Materials Research 284-286 (lipiec 2011): 1262–65. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1262.
Pełny tekst źródłaRanjha, Sagheer Abbas, Peter J. Mutton i Ajay Kapoor. "Fatigue Analysis of the Rail Underhead Radius under High Axle Load Conditions". Advanced Materials Research 891-892 (marzec 2014): 1181–87. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.1181.
Pełny tekst źródłaThadsoongnoen, Kotchaporn, Anat Hasap, Nitikorn Noraphaiphipaksa i Chaosuan Kanchanomai. "Numerical Investigation of Residual Stress Formation Mechanisms in Flash-Butt Welded Rail". Metals 13, nr 8 (28.07.2023): 1359. http://dx.doi.org/10.3390/met13081359.
Pełny tekst źródłaBeneš, Libor. "ON WHEEL–RAIL CONTACT SURFACE PHENOMENA WITH STRUCTURAL CHANGES AND ‘WHITE ETCHING LAYERS’ GENERATION". TRANSPORT 27, nr 2 (26.06.2012): 196–205. http://dx.doi.org/10.3846/16484142.2012.696214.
Pełny tekst źródłaYang, Rongshan, Shihao Cao, Weixin Kang, Jiali Li i Xiaoyu Jiang. "Mechanism Analysis of Spalling Defect on Rail Surface under Rolling Contact Conditions". Mathematical Problems in Engineering 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/7012710.
Pełny tekst źródłaGao, Yuan, Ping Wang, Yibin Liu, Jingmang Xu, Zhiguo Dong i Kai Wang. "Investigation on Wheel-Rail Contact and Damage Behavior in a Flange Bearing Frog with Explicit Finite Element Method". Mathematical Problems in Engineering 2019 (14.12.2019): 1–17. http://dx.doi.org/10.1155/2019/1209352.
Pełny tekst źródłaZHAO, Xin. "Analysis of thermal-elastic stress of wheel-rail in rolling-sliding contact". Chinese Journal of Mechanical Engineering (English Edition) 20, nr 03 (2007): 18. http://dx.doi.org/10.3901/cjme.2007.03.018.
Pełny tekst źródłaYang, Liuqing, Ming Hu, Deming Zhao, Jing Yang i Xun Zhou. "Thermo-mechanical analysis of train wheel-rail contact using a novel finite-element model". Industrial Lubrication and Tribology 72, nr 5 (10.02.2020): 687–93. http://dx.doi.org/10.1108/ilt-07-2019-0298.
Pełny tekst źródła