Gotowa bibliografia na temat „Strain tensor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Strain tensor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Strain tensor"
Morawiec, A. "On accounting for preferred crystallite orientations in determination of average elastic strain by diffraction". Journal of Applied Crystallography 51, nr 1 (1.02.2018): 148–56. http://dx.doi.org/10.1107/s1600576718000079.
Pełny tekst źródłaBazˇant, Zdeneˇk P. "Easy-to-Compute Tensors With Symmetric Inverse Approximating Hencky Finite Strain and Its Rate". Journal of Engineering Materials and Technology 120, nr 2 (1.04.1998): 131–36. http://dx.doi.org/10.1115/1.2807001.
Pełny tekst źródłaChandra, N., i Zhiyum Xie. "Development of Generalized Plane-Strain Tensors for the Concentric Cylinder". Journal of Applied Mechanics 62, nr 3 (1.09.1995): 590–94. http://dx.doi.org/10.1115/1.2895986.
Pełny tekst źródłaBoutelier, David, Christoph Schrank i Klaus Regenauer-Lieb. "2-D finite displacements and strain from particle imaging velocimetry (PIV) analysis of tectonic analogue models with TecPIV". Solid Earth 10, nr 4 (15.07.2019): 1123–39. http://dx.doi.org/10.5194/se-10-1123-2019.
Pełny tekst źródłaSurana, Karan S., i Stephen W. Long. "Ordered Rate Constitutive Theories for Non-Classical Thermofluids Based on Convected Time Derivatives of the Strain and Higher Order Rotation Rate Tensors Using Entropy Inequality". Entropy 22, nr 4 (14.04.2020): 443. http://dx.doi.org/10.3390/e22040443.
Pełny tekst źródłaTheocaris, P. S., i D. P. Sokolis. "Linear elastic eigenstates of the compliance tensor for trigonal crystals". Zeitschrift für Kristallographie - Crystalline Materials 215, nr 1 (1.01.2000): 1–9. http://dx.doi.org/10.1524/zkri.2000.215.1.01.
Pełny tekst źródłaSokolova, M. Yu, i D. V. Khristich. "FINITE STRAINS OF NONLINEAR ELASTIC ANISOTROPIC MATERIALS". Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, nr 70 (2021): 103–16. http://dx.doi.org/10.17223/19988621/70/9.
Pełny tekst źródłaTheocaris, Pericles S., i Dimitrios P. Sokolis. "Spectral decomposition of the linear elastic tensor for monoclinic symmetry". Acta Crystallographica Section A Foundations of Crystallography 55, nr 4 (1.07.1999): 635–47. http://dx.doi.org/10.1107/s0108767398016766.
Pełny tekst źródłaMoore, J. G., S. A. Schorn i J. Moore. "Education Committee Best Paper of 1995 Award: Methods of Classical Mechanics Applied to Turbulence Stresses in a Tip Leakage Vortex". Journal of Turbomachinery 118, nr 4 (1.10.1996): 622–29. http://dx.doi.org/10.1115/1.2840917.
Pełny tekst źródłaElata, D., i M. B. Rubin. "Isotropy of Strain Energy Functions Which Depend Only on a Finite Number of Directional Strain Measures". Journal of Applied Mechanics 61, nr 2 (1.06.1994): 284–89. http://dx.doi.org/10.1115/1.2901442.
Pełny tekst źródłaRozprawy doktorskie na temat "Strain tensor"
Jacot, Benjamin (Benjamin Paul Emmanuel). "A strain tensor method for three-dimensional optimal Michell structures". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104125.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 94-95).
In the design of discrete structures such as trusses and frames, important quantitative goals such as minimal weight or minimal compliance often dominate. Many numerical techniques exist to address these needs. However, an analytical approach exists to meet similar goals, which was initiated by A.G.M. Michell (1904) and has been mostly used for two-dimensional structures so far. This thesis develops a method to extend the existing mainly two-dimensional approach to apply to three-dimensional structures. It will be referred as the Michell strain tensor method (MSTM). First, the proof that MSTM is consistent with the existing theory in two dimensions is provided. Second, two-dimensional known solutions will be replicated based on MSTM. Finally, MSTM will be used to solve new three- dimensional cases.
by Benjamin Jacot.
M. Eng.
Rönnbrant, Anders. "Implementing a visualization tool for myocardial strain tensors". Thesis, Linköping University, Department of Biomedical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5173.
Pełny tekst źródłaThe heart is a complex three-dimensional structure with mechanical properties that are inhomogeneous, non-linear, time-variant and anisotropic. These properties affect major physiological factors within the heart, such as the pumping performance of the ventricles, the oxygen demand in the tissue and the distribution of coronary blood flow.
During the cardiac cycle the heart muscle tissue is deformed as a consequence of the active contraction of the muscle fibers and their relaxation respectively. A mapping of this deformation would give increased understanding of the mechanical properties of the heart. The deformation induces strain and stress in the tissue which are both mechanical properties and can be described with a mathematical tensor object.
The aim of this master's thesis is to develop a visualization tool for the strain tensor objects that can aid a user to see and/or understand various differences between different hearts and spatial and temporal differences within the same heart. Preferably should the tool be general enough for use with different types of data.
Kellermann, David Conrad Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Strongly orthotropic continuum mechanics". Publisher:University of New South Wales. Mechanical & Manufacturing Engineering, 2008. http://handle.unsw.edu.au/1959.4/41454.
Pełny tekst źródłaLundgren, Katarina. "Investigation of transmural cardiac and fiber strain in ischemic and non-ischemic tissue during diastole". Thesis, Linköping University, Department of Biomedical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7955.
Pełny tekst źródłaThe cardiac wall has complex three-dimensional fiber structures and mechanical properties that enable the heart to efficiently pump the blood through the body. By studying the myocardial strains induced during diastole, information about the pumping performance of the heart and what mechanisms that are responsible for this effective blood filling, can be achieved. Two different computation methods for myocardial strain, both based on data acquired from marker technique, were compared using a theoretical cylinder model. The non-homogeneous polynomial fitting method yielded higher accuracy than a homogeneous tetrahedron method, and was further used to investigate cardiac and fiber strains at different wall depths and myocardial regions in normal and ischemic ovine hearts. Large spatial and regional variations were found, as well as alterations, conveyed by ischemic conditions, of fiber mechanisms responsible for the circumferential expansion and wall thinning during diastole.
Kindberg, Katarina. "Regional Kinematics of the Heart: Investigation with Marker Tracking and with Phase Contrast Magnetic Resonance Imaging". Thesis, Linköping University, Department of Biomedical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1735.
Pełny tekst źródłaThe pumping performance of the heart is affected by the mechanical properties of the muscle fibre part of the cardiac wall, the myocardium. The myocardium has a complex structure, where muscle fibres have different orientations at different locations, and during the cardiac cycle, the myocardium undergoes large elastic deformations. Hence, myocardial strain pattern is complex. In this thesis work, a computation method for myocardial strain and a detailed map of myocardial transmural strain during the cardiac cycle are found by the use of surgically implanted metallic markers and beads. The strain is characterized in a local cardiac coordinate system. Thereafter, non-invasive phase contrast magnetic resonance imaging (PC-MRI) is used to compare strain at different myocardial regions. The difference in resolution between marker data and PC-MRI data is elucidated and some of the problems associated with the low resolution of PC-MRI are given.
Song, Min Jae. "Direct tensor expression by Eulerian approach for constitutive relations based on strain invariants in transversely isotropic green elasticity - finite extension and torsion". [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1667.
Pełny tekst źródłaSigfridsson, Andreas. "Multidimensional MRI of Myocardial Dynamics : Acquisition, Reconstruction and Visualization". Doctoral thesis, Linköpings universitet, Medicinsk informatik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-51489.
Pełny tekst źródłaEissa, Leila. "Utilisation de méthodes de l'astrogéodésie et de la géodésie spatiale pour des études de déformations de l’écorce terrestre : représentations de déformations et de leur degré de signification par des tenseurs régulièrement répartis". Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1018/document.
Pełny tekst źródłaSpace geodesy tools are now strongly involved in geophysical studies. The horizontal deformation field for a region of interest is provided by two main methods : a velocity field and a strain tensor field. A strain tensors field solution has the advantage of being independent of the reference frame in which the velocities are expressed. Nevertheless, the current methods of calculation of a strain tensors field depend on the positioning of geodetic points. Furthermore, the current mapping method of tensors by their mains axis is not easy to read and to interpret, needing some training. This thesis is devoted to the problem of calculating a continuous field of regularly spaced strain tensors, and providing an intuitive mapping method of these tensors with a simultaneous representation of their significance level on the same map. The estimation of uncertainties related to the deformation field is made in two steps : firstly, a Monte Carlo method is applied for the calculation of uncertainties related to the measurements, its results allow to define the significance level of tensors by normalizing tensor's values with respect to their related uncertainties, then, the constraints coming from the distribution of the network of measurement points are calculated and combined with the first source of error. The new approach of mapping tensors was analyzed through an opinion survey by providing several possibilities of representation. The results of this opinion survey allowed us to validate this new mapping method by geophysicists for representing a deformation field, because it allows highlighting some aspects not well illustrated by the classical mapping method of tensors, and therefore choosing the graphical elements of the map which provide the best intuitive method of mapping a strain tensors field
ALBISETTI, A. FIGINI. "Structural and Thermodiffractometric Studies of Coordination Polymers Containing Ditopic Exobidentate Nitrogen Ligand". Doctoral thesis, Università degli Studi di Milano, 2008. http://hdl.handle.net/2434/57743.
Pełny tekst źródłaZahradník, Martin. "Dynamic control of magnetization for spintronic applications studied by magneto-optical methods". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS155/document.
Pełny tekst źródłaTwo important mechanisms in preparation of ultrathin films of magnetic oxides were systematically investigated in this work. First, influence of epitaxial strain on resulting magneto-optical properties of La₂/₃Sr₁/₃MnO₃ (LSMO) ultrathin films was studied. The investigated films were grown by pulsed laser deposition on four different substrates, providing a broad range of induced epitaxial strains. Magnetic properties were found to deteriorate with increasing value of the epitaxial strain, as expected due to the unit cell distortion increasingly deviating from the bulk and effect of the magnetically inert layer. A combination of spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy was used to determine spectra of the diagonal and off-diagonal elements of permittivity tensor. The off-diagonal elements confirmed presence of two previously reported electronic transitions in spectra of all films. Moreover, they revealed another electronic transition around 4.3 eV only in spectra of films grown under compressive strain. We proposed classification of this transition as crystal field paramagnetic Mn t2g → eg transition, which was further supported by ab initio calculations. A key role of strain in controlling electronic structure of ultrathin perovskite films was demonstrated. Dynamic application of strain via use of piezoelectric underlayer remained inconclusive, requiring further improvement of the strain transfer from the piezoelectric layer into the LSMO. Second, influence of substrate miscut on magnetization dynamics in SrRuO₃ (SRO) was studied. As expected we found that high miscut angle leads to suppression of multi-variant growth. By means of magnetic force microscopy we showed that presence of multiple SRO variants leads to higher density of defects acting as pinning or nucleation sites for the magnetic domains, which consequently results in deterioration of magnetic properties. We demonstrated that use of vicinal substrate with high miscut angle is important for fabrication of high quality SRO ultrathin films with low density of crystallographic defects and excellent magnetic properties
Książki na temat "Strain tensor"
Erlebacher, Gordon. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1992.
Znajdź pełny tekst źródłaCanada Centre For Mineral and Energy Technology. Mineral Research Program. Stress Tensor Determinations with the South African Biaxial Strain Cell (Doorstopper). S.l: s.n, 1985.
Znajdź pełny tekst źródłaS, Sarkar, i Langley Research Center, red. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Znajdź pełny tekst źródłaS, Sarkar, i Langley Research Center, red. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Znajdź pełny tekst źródłaS, Sarkar, i Langley Research Center, red. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Znajdź pełny tekst źródłaFreed, Alan David. Natural strain. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaOertel, G. F. Stress and deformation: A handbook on tensors in geology. New York: Oxford University Press, 1996.
Znajdź pełny tekst źródłaB, Gatski T., Speziale C. G. 1948- i Institute for Computer Applications in Science and Engineering., red. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1994.
Znajdź pełny tekst źródłaB, Gatski T., Speziale C. G. 1948- i Institute for Computer Applications in Science and Engineering., red. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1994.
Znajdź pełny tekst źródłaInnis, Pauline B. Bridge across the seas. Washington, DC: Devon Pub. Co., 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Strain tensor"
Zhilin, Pavel A., Holm Altenbach, Elena A. Ivanova i Anton Krivtsov. "Material Strain Tensor". W Advanced Structured Materials, 321–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36394-8_19.
Pełny tekst źródłaLorentzen, T., i T. Leffers. "Strain Tensor Measurements by Neutron Diffraction". W Measurement of Residual and Applied Stress Using Neutron Diffraction, 253–61. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2797-4_16.
Pełny tekst źródłaMalgrange, Cécile, Christian Ricolleau i Michel Schlenker. "Deformation of a solid. The strain tensor". W Symmetry and Physical Properties of Crystals, 241–57. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8993-6_12.
Pełny tekst źródłaHorio, Hideyuki, Yoshihiro Kuroda, Tomohiro Kuroda, Osamu Oshiro, Shigeo Wada, Ryo Haraguchi i Kazuo Nakazawa. "Analysis of Cardiac Torsion with Strain Tensor". W IFMBE Proceedings, 304–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_80.
Pełny tekst źródłaSosa-Cabrera, Darío, Karl Krissian, Javier González-Fernández, Luis Gómez-Déniz, Eduardo Rovaris, Carlos Castaño-Moraga i Juan Ruiz-Alzola. "Strain Tensor Elastography: 2D and 3D Visualizations". W Tensors in Image Processing and Computer Vision, 381–403. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-299-3_18.
Pełny tekst źródłaZhang, W. C., i K. E. Evans. "A Strain Tensor Polynomial Failure Criterion for Anisotropic Materials". W Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials, 651–58. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3655-3_71.
Pełny tekst źródłaPyrz, Ryszard. "Atomistic/Continuum Transition – the Concept of Atomic Strain Tensor". W Fracture of Materials: Moving Forwards, 193–98. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-994-6.193.
Pełny tekst źródłaAbd-Elmoniem, Khaled Z., Matthias Stuber i Jerry L. Prince. "Multi-slice Three-Dimensional Myocardial Strain Tensor Quantification Using zHARP". W Lecture Notes in Computer Science, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73273-0_6.
Pełny tekst źródłaMorawiec, A. "Determinability of Complete Residual Strain Tensor from Multiple CBED Patterns". W Materials Science Forum, 115–20. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-414-6.115.
Pełny tekst źródłaOberlack, Martin. "Closure of the Dissipation Tensor and the Pressure—Strain Tensor Based on the Two-Point Correlation Equation". W Turbulent Shear Flows 9, 33–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78823-9_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Strain tensor"
Pyrz, Ryszard. "The Concept of Strain Tensor at Atomic Level". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17026.
Pełny tekst źródłaNaghdabadi, Reza, Mohsen Asghari i Kamyar Ghavam. "Compact Basis Free Relations for Stress Tensors Conjugate to Hill’s Strain Measures". W ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95367.
Pełny tekst źródłaBehfar, K., A. Sheshmani i R. Naghdabadi. "General Derivations for Conjugate Strains of Eshelby-Like Stress Tensors". W ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58388.
Pełny tekst źródłaChetouane, Brahim, Claude Bohatier, Fre´de´ric Dubois i Marc Vinches. "Stress and Strain Tensors in Granular Medium Application to Masonry Structures". W ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48430.
Pełny tekst źródłaHewer, Alexander, Joachim Weickert, Henning Seibert, Tobias Scheffer i Stefan Diebels. "Lagrangian Strain Tensor Computation with Higher Order Variational Models". W British Machine Vision Conference 2013. British Machine Vision Association, 2013. http://dx.doi.org/10.5244/c.27.129.
Pełny tekst źródłaLienert, U. "Nondestructive Strain Tensor Scanning within Samples of Cylindrical Symmetry". W SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757984.
Pełny tekst źródłaBates, Kelsey M., Matthew W. Day, Christopher L. Smallwood, Ronald Ulbricht, Travis M. Autry, Rachel C. Owen, Geoffrey Diederich i in. "Measuring the Diamond strain Tensor with Silicon-Vacancy Centers". W CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.ftu3d.4.
Pełny tekst źródłaAsghari, Mohsen, i Reza Naghdabadi. "Unified Basis-Free Relation Between Two Stress Tensors Conjugate to Arbitrary Hill’s Strain Measures". W ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93687.
Pełny tekst źródłaFukunaga, Masataka, i Nobuyuki Shimizu. "Three-Dimensional Fractional Derivative Models for Finite Deformation". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47552.
Pełny tekst źródłaCoiret, A. L., M. L. V. Gallenne i P. Y. M. Texier. "Tire/Pavement Strain Tensor Measurement With an Infrastructure-Based Approach". W World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64300.
Pełny tekst źródłaRaporty organizacyjne na temat "Strain tensor"
Mott, Peter, Ali S. Morgan i Ulrich W. Sutter. The Atomic Strain Tensor. Fort Belvoir, VA: Defense Technical Information Center, maj 1991. http://dx.doi.org/10.21236/ada237287.
Pełny tekst źródłaMurdoch, Lawrence C., Scott DeWolf, Leonid N. Germanovich, Alexander Hanna, Robert Moak i Stephen Moysey. Characterizing and Interpreting the In Situ Strain Tensor During CO2 Injection. Office of Scientific and Technical Information (OSTI), czerwiec 2019. http://dx.doi.org/10.2172/1529100.
Pełny tekst źródłaHubbard, Camden R. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5. Office of Scientific and Technical Information (OSTI), wrzesień 2011. http://dx.doi.org/10.2172/1025403.
Pełny tekst źródłaBahder, Thomas B. Transformation Properties of the Lagrangian and Eulerian Strain Tensors. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2002. http://dx.doi.org/10.21236/ada400671.
Pełny tekst źródłaScheidler, Michael J. Time Rates of Generalized Strain Tensors. Part 1. Component Formulas. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada232497.
Pełny tekst źródłaScheidler, Michael J. Time Rates of Generalized Strain Tensors. Part 2. Approximate Basis-Free Formulas. Fort Belvoir, VA: Defense Technical Information Center, październik 1991. http://dx.doi.org/10.21236/ada242095.
Pełny tekst źródłaGarrison, Ben, Maxim Gussev i Kory Linton. Progress Report on Plane Strain Tension Testing of ATF FeCrAl Cladding. Office of Scientific and Technical Information (OSTI), sierpień 2020. http://dx.doi.org/10.2172/1648931.
Pełny tekst źródłaKarlstrom, Karl, Laura Crossey, Allyson Matthis i Carl Bowman. Telling time at Grand Canyon National Park: 2020 update. National Park Service, kwiecień 2021. http://dx.doi.org/10.36967/nrr-2285173.
Pełny tekst źródłaMonetary Policy Report - October 2022. Banco de la República Colombia, październik 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr4-2022.
Pełny tekst źródła