Artykuły w czasopismach na temat „Strain Sensing Application”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Strain Sensing Application”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Gang, Qi-Ang Wang, Guiyue Jiao, Pengyuan Dang, Guohao Nie, Zichen Liu i Junyu Sun. "Review of Wireless RFID Strain Sensing Technology in Structural Health Monitoring". Sensors 23, nr 15 (3.08.2023): 6925. http://dx.doi.org/10.3390/s23156925.
Pełny tekst źródłaGrossman, Barry G., Li-Tien Huang, Paul J. Cosentino i Wulf von Eckroth. "Three-Dimensional Structural Strain Measurement with the Use of Fiber-Optic Sensors". Transportation Research Record: Journal of the Transportation Research Board 1596, nr 1 (styczeń 1997): 45–50. http://dx.doi.org/10.3141/1596-07.
Pełny tekst źródłaFang, Xinqiu, Fan Zhang, Zongshen Shi, Minfu Liang i Yang Song. "Research and Application of Multi-Mode Joint Monitoring System for Shaft Wall Deformation". Sensors 22, nr 17 (30.08.2022): 6551. http://dx.doi.org/10.3390/s22176551.
Pełny tekst źródłaStoney, Rory, Dermot Geraghty i Garret E. O’Donnell. "Dynamic Response Analysis of Passive Wireless Surface Acoustic Wave (SAW) Strain Sensors Used for Force Measurement in Turning". International Journal of Automation Technology 7, nr 4 (5.07.2013): 451–60. http://dx.doi.org/10.20965/ijat.2013.p0451.
Pełny tekst źródłaHorszczaruk, E., P. Sikora i P. Łukowski. "Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects". Archives of Civil Engineering 62, nr 3 (1.09.2016): 61–74. http://dx.doi.org/10.1515/ace-2015-0083.
Pełny tekst źródłaChaoui, Fahd, Otman Aghzout, Mounia Chakkour i Mounir El Yakhloufi. "Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications". Active and Passive Electronic Components 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/6523046.
Pełny tekst źródłaGao, Lei, Zhihao Li, Jie Li, Zhen Wang, Haiming Jiang i Mingyang Wang. "Application of Fiber Grating Sensing in Similar Model Impact Tests of Underground Engineering". Geofluids 2023 (14.04.2023): 1–18. http://dx.doi.org/10.1155/2023/8185870.
Pełny tekst źródłaChen, Chun-Bing, Hsuan-Ling Kao, Li-Chun Chang, Cheng-Lin Cho, Yi-Chen Lin, C. C. Huang, C. C. Mo, Wen-Hung Chung i Hsien-Chin Chiu. "Fabrication of Inkjet-Printed Carbon Nanotube for Enhanced Mechanical and Strain-Sensing Performance". ECS Journal of Solid State Science and Technology 10, nr 12 (1.12.2021): 121001. http://dx.doi.org/10.1149/2162-8777/ac40d4.
Pełny tekst źródłaYang, Yongqiang, Yongsong Tan, Qun Wang, Yihu Shu, Qinsheng Wang i Yunjie Yin. "Application of AgNPs/rGO Modified Nylon Fabric in Strain Sensing". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012017. http://dx.doi.org/10.1088/1742-6596/2109/1/012017.
Pełny tekst źródłaIrani, Farid Sayar, Ali Hosseinpour Shafaghi, Melih Can Tasdelen, Tugce Delipinar, Ceyda Elcin Kaya, Guney Guven Yapici i Murat Kaya Yapici. "Graphene as a Piezoresistive Material in Strain Sensing Applications". Micromachines 13, nr 1 (12.01.2022): 119. http://dx.doi.org/10.3390/mi13010119.
Pełny tekst źródłaGlisic, Branko. "Concise Historic Overview of Strain Sensors Used in the Monitoring of Civil Structures: The First One Hundred Years". Sensors 22, nr 6 (20.03.2022): 2397. http://dx.doi.org/10.3390/s22062397.
Pełny tekst źródłaMa, Chuanyi, Xue Xin, Ning Zhang, Jianjiang Wang, Chuan Wang, Ming Liang, Yunfeng Zhang i Zhanyong Yao. "Encapsulation for Sensing Element and Its Application in Asphalt Road Monitoring". Coatings 13, nr 2 (8.02.2023): 390. http://dx.doi.org/10.3390/coatings13020390.
Pełny tekst źródłaForbes, Bradley, Nicholas Vlachopoulos i Andrew J. Hyett. "The application of distributed optical strain sensing to measure the strain distribution of ground support members". FACETS 3, nr 1 (1.10.2018): 195–226. http://dx.doi.org/10.1139/facets-2017-0093.
Pełny tekst źródłaShiryayev, Oleg, Nader Vahdati, Fook Fah Yap i Haider Butt. "Compliant Mechanism-Based Sensor for Large Strain Measurements Employing Fiber Optics". Sensors 22, nr 11 (24.05.2022): 3987. http://dx.doi.org/10.3390/s22113987.
Pełny tekst źródłaChen, J. M., M. Parameswaran i M. Paranjape. "Piezoresistance characterization of commercial CMOS gate polysilicon and its application in biomass microsensors". Canadian Journal of Physics 74, S1 (1.12.1996): 151–55. http://dx.doi.org/10.1139/p96-850.
Pełny tekst źródłaGao, Ke, Zhiyue Zhang, Shun Weng, Hongping Zhu, Hong Yu i Tingjun Peng. "Review of Flexible Piezoresistive Strain Sensors in Civil Structural Health Monitoring". Applied Sciences 12, nr 19 (28.09.2022): 9750. http://dx.doi.org/10.3390/app12199750.
Pełny tekst źródłaYee, Min Juey, N. M. Mubarak, E. C. Abdullah, Mohammad Khalid, Rashmi Walvekar, Rama Rao Karri, Sabzoi Nizamuddin i Arshid Numan. "Carbon nanomaterials based films for strain sensing application—A review". Nano-Structures & Nano-Objects 18 (kwiecień 2019): 100312. http://dx.doi.org/10.1016/j.nanoso.2019.100312.
Pełny tekst źródłaChong, Yung Sin, Keat Hoe Yeoh, Pei Ling Leow i Pei Song Chee. "Piezoresistive strain sensor array using polydimethylsiloxane-based conducting nanocomposites for electronic skin application". Sensor Review 38, nr 4 (17.09.2018): 494–500. http://dx.doi.org/10.1108/sr-11-2017-0238.
Pełny tekst źródłaZhang, Xiao Fei, Zhong Hu Lv, Xian Wei Meng, Fan Jiang i Qing Zhang. "Application of Optical Fiber Sensing Real-Time Monitoring Technology Using in Ripley Landslide". Applied Mechanics and Materials 610 (sierpień 2014): 199–204. http://dx.doi.org/10.4028/www.scientific.net/amm.610.199.
Pełny tekst źródłaJiang, Yunfeng. "Application of optical fiber sensing technology in bridge detection". Highlights in Science, Engineering and Technology 9 (30.09.2022): 111–14. http://dx.doi.org/10.54097/hset.v9i.1727.
Pełny tekst źródłaSirat, Qurratu Aini, Dayangku Salma Awang Ismail, Azman Kassim i Ahmad Safuan A. Rashid. "Application of distributed optical fibre for shallow foundation". MATEC Web of Conferences 250 (2018): 01019. http://dx.doi.org/10.1051/matecconf/201825001019.
Pełny tekst źródłaWang, Yizhe, i Zhiwei Xu. "Adaptive Feedforward Compensating Self-Sensing Method for Active Flutter Suppression". Sensors 18, nr 10 (13.10.2018): 3447. http://dx.doi.org/10.3390/s18103447.
Pełny tekst źródłaAhmad Ruzaidi, Dania Adila, Muni Raj Maurya, Swathi Yempally, Sajeel Abdul Gafoor, Mithra Geetha, Nazreen Che Roslan, John-John Cabibihan, Kishor Kumar Sadasivuni i Mohd Muzamir Mahat. "Revealing the improved sensitivity of PEDOT:PSS/PVA thin films through secondary doping and their strain sensors application". RSC Advances 13, nr 12 (2023): 8202–19. http://dx.doi.org/10.1039/d3ra00584d.
Pełny tekst źródłaXu, Xunjian, Antonio Bueno, Koji Nonaka i Salvador Sales. "Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques". Journal of Sensors 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/839803.
Pełny tekst źródłaLiang, Minfu, Xinqiu Fang, Ningning Chen, Xiaomei Xue i Gang Wu. "A Sensing Mechanism and the Application of a Surface-Bonded FBG Dynamometry Bolt". Applied Sciences 12, nr 7 (22.03.2022): 3225. http://dx.doi.org/10.3390/app12073225.
Pełny tekst źródłaRoy, Rinto, Alexander Tessler, Cecilia Surace i Marco Gherlone. "Shape Sensing of Plate Structures Using the Inverse Finite Element Method: Investigation of Efficient Strain–Sensor Patterns". Sensors 20, nr 24 (9.12.2020): 7049. http://dx.doi.org/10.3390/s20247049.
Pełny tekst źródłaRajeev, Pathmanathan, Jayantha Kodikara, Wing Kong Chiu i Thomas Kuen. "Distributed Optical Fibre Sensors and their Applications in Pipeline Monitoring". Key Engineering Materials 558 (czerwiec 2013): 424–34. http://dx.doi.org/10.4028/www.scientific.net/kem.558.424.
Pełny tekst źródłaZhao, Xuefeng, Jie Lu, Ruicong Han, Xianglong Kong, Yanhong Wang i Le Li. "Application of Multiscale Fiber Optical Sensing Network Based on Brillouin and Fiber Bragg Grating Sensing Techniques on Concrete Structures". International Journal of Distributed Sensor Networks 8, nr 10 (1.10.2012): 310797. http://dx.doi.org/10.1155/2012/310797.
Pełny tekst źródłaYuan, Yonggui, Bing Wu, Jun Yang i Libo Yuan. "Tunable optical-path correlator for distributed strain or temperature-sensing application". Optics Letters 35, nr 20 (8.10.2010): 3357. http://dx.doi.org/10.1364/ol.35.003357.
Pełny tekst źródłaTanaka, Shinji, Kiyokazu Yamada, Hideaki Kobayashii i Michio Kadota. "Application of Acoustooptic Tunable Filter to Strain- or Vibration-Sensing System". Japanese Journal of Applied Physics 46, nr 7B (26.07.2007): 4633–35. http://dx.doi.org/10.1143/jjap.46.4633.
Pełny tekst źródłaBai, Xuqiu, Jun Zheng, Zhichun Xu, Fei Pan, Xiang Ge i Caideng Yuan. "Ultrathin CNTs Film Based on Marangoni Effect for Strain Sensing Application". Coatings 13, nr 6 (1.06.2023): 1026. http://dx.doi.org/10.3390/coatings13061026.
Pełny tekst źródłaSeyedin, Shayan, Peng Zhang, Maryam Naebe, Si Qin, Jun Chen, Xungai Wang i Joselito M. Razal. "Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications". Materials Horizons 6, nr 2 (2019): 219–49. http://dx.doi.org/10.1039/c8mh01062e.
Pełny tekst źródłaAwang Ismail, Dayangku Salma, Azman Kassim, Hisham Mohamad, Ahmad Safuan A. Rashid i Aliff Ridzuan Bunawan. "Application of Brillouin-based distributed optical fibre sensing technology to measure strain development of a slope model". MATEC Web of Conferences 250 (2018): 01020. http://dx.doi.org/10.1051/matecconf/201825001020.
Pełny tekst źródłaMirzazade, Ali, Cosmin Popescu i Björn Täljsten. "Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach". Infrastructures 8, nr 4 (4.04.2023): 71. http://dx.doi.org/10.3390/infrastructures8040071.
Pełny tekst źródłaPiccolo, Arianna, Sylvie Delepine-Lesoille, Etienne Friedrich, Shasime Aziri, Yann Lecieux i Dominique Leduc. "Mechanical Properties of Optical Fiber Strain Sensing Cables under γ-Ray Irradiation and Large Strain Influence". Sensors 20, nr 3 (27.01.2020): 696. http://dx.doi.org/10.3390/s20030696.
Pełny tekst źródłaSheng, Liwen, Ligong Li, Leijun Hu, Ming Yuan, Jinpeng Lang, Jianguo Wang, Peng Li, Zongyi Bi, Jisong Yan i Zhiming Liu. "Distributed Fiberoptic Sensor for Simultaneous Temperature and Strain Monitoring Based on Brillouin Scattering Effect in Polyimide-Coated Fibers". International Journal of Optics 2020 (16.11.2020): 1–5. http://dx.doi.org/10.1155/2020/8810986.
Pełny tekst źródłaWang, Xi, Qiao Li i Xiaoming Tao. "Enhanced electromechanical resilience and mechanism of the composites-coated fabric sensors with crack-induced conductive network for wearable applications". Smart Materials and Structures 31, nr 3 (14.02.2022): 035032. http://dx.doi.org/10.1088/1361-665x/ac50f3.
Pełny tekst źródłaHan, Tao, Anindya Nag, Nasrin Afsarimanesh, Fowzia Akhter, Hangrui Liu, Samta Sapra, Subhas Mukhopadhyay i Yongzhao Xu. "Gold/Polyimide-Based Resistive Strain Sensors". Electronics 8, nr 5 (22.05.2019): 565. http://dx.doi.org/10.3390/electronics8050565.
Pełny tekst źródłaSong, Ming, Hui Wang i Tong Xu. "In-Plane Strain Field Sensor Based on the Semiconductor Film". Materials Science Forum 848 (marzec 2016): 777–83. http://dx.doi.org/10.4028/www.scientific.net/msf.848.777.
Pełny tekst źródłaFang, Feiyu, Han Wang, Huaquan Wang, Xiaofei Gu, Jun Zeng, Zixu Wang, Xindu Chen, Xin Chen i Meiyun Chen. "Stretchable MXene/Thermoplastic Polyurethanes based Strain Sensor Fabricated Using a Combined Electrospinning and Electrostatic Spray Deposition Technique". Micromachines 12, nr 3 (1.03.2021): 252. http://dx.doi.org/10.3390/mi12030252.
Pełny tekst źródłaKang, Byung-Ho, In-Yong Jeong i Sung-Hoon Park. "Design of a Smart Conducting Nanocomposite with an Extended Strain Sensing Range by Conjugating Hybrid Structures". Polymers 14, nr 13 (23.06.2022): 2551. http://dx.doi.org/10.3390/polym14132551.
Pełny tekst źródłaSun, Shouheng, Zhenqin Wang i Yuting Wang. "Progress in Microtopography Optimization of Polymers-Based Pressure/Strain Sensors". Polymers 15, nr 3 (2.02.2023): 764. http://dx.doi.org/10.3390/polym15030764.
Pełny tekst źródłaZhou, Xiao-Dong, Er-Lei Wang, Hong-Lei Yuan i Yong-Mei Wang. "A Sensitive and Response-Stable Strain Sensor with 30% Sensing Regions". Journal of Nanoelectronics and Optoelectronics 16, nr 4 (1.04.2021): 597–601. http://dx.doi.org/10.1166/jno.2021.2983.
Pełny tekst źródłaZhang, Shao Jun, i Yue Ming Liu. "Fabrication of FBG Strain Gauge Used for High Temperature Strain Monitoring". Applied Mechanics and Materials 668-669 (październik 2014): 920–23. http://dx.doi.org/10.4028/www.scientific.net/amm.668-669.920.
Pełny tekst źródłaHer, Shiuh-Chuan, i Yuan-Ming Liang. "Carbon-Based Nanomaterials Thin Film Deposited on a Flexible Substrate for Strain Sensing Application". Sensors 22, nr 13 (4.07.2022): 5039. http://dx.doi.org/10.3390/s22135039.
Pełny tekst źródłaPeng, Haiyou, Bolin Chen, Ping Dong, Si chen, Yunping Liao i Qi Guo. "Application of FBG Sensing Technology to Internal Deformation Monitoring of Landslide". Advances in Civil Engineering 2020 (30.06.2020): 1–10. http://dx.doi.org/10.1155/2020/1328945.
Pełny tekst źródłaQiu, Wei, Shi-Lei Li, Wei-lin Deng, Di Gao i Yi-Lan Kang. "Strain Sensor of Carbon Nanotubes in Microscale: From Model to Metrology". Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/406154.
Pełny tekst źródłaSATO, YASUHISA. "Dynamic sensing with bonded strain gages - Application to dynamic testing of materials." Journal of the Japan Society for Precision Engineering 52, nr 4 (1986): 610–14. http://dx.doi.org/10.2493/jjspe.52.610.
Pełny tekst źródłaHughes, Josie, i Fumiya Iida. "Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring". Sensors 18, nr 11 (8.11.2018): 3822. http://dx.doi.org/10.3390/s18113822.
Pełny tekst źródłaWan, Caichao, Luyu Zhang, Ken-Tye Yong, Jian Li i Yiqiang Wu. "Recent progress in flexible nanocellulosic structures for wearable piezoresistive strain sensors". Journal of Materials Chemistry C 9, nr 34 (2021): 11001–29. http://dx.doi.org/10.1039/d1tc02360h.
Pełny tekst źródła