Gotowa bibliografia na temat „Strain Sensing Application”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Strain Sensing Application”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Strain Sensing Application"
Liu, Gang, Qi-Ang Wang, Guiyue Jiao, Pengyuan Dang, Guohao Nie, Zichen Liu i Junyu Sun. "Review of Wireless RFID Strain Sensing Technology in Structural Health Monitoring". Sensors 23, nr 15 (3.08.2023): 6925. http://dx.doi.org/10.3390/s23156925.
Pełny tekst źródłaGrossman, Barry G., Li-Tien Huang, Paul J. Cosentino i Wulf von Eckroth. "Three-Dimensional Structural Strain Measurement with the Use of Fiber-Optic Sensors". Transportation Research Record: Journal of the Transportation Research Board 1596, nr 1 (styczeń 1997): 45–50. http://dx.doi.org/10.3141/1596-07.
Pełny tekst źródłaFang, Xinqiu, Fan Zhang, Zongshen Shi, Minfu Liang i Yang Song. "Research and Application of Multi-Mode Joint Monitoring System for Shaft Wall Deformation". Sensors 22, nr 17 (30.08.2022): 6551. http://dx.doi.org/10.3390/s22176551.
Pełny tekst źródłaStoney, Rory, Dermot Geraghty i Garret E. O’Donnell. "Dynamic Response Analysis of Passive Wireless Surface Acoustic Wave (SAW) Strain Sensors Used for Force Measurement in Turning". International Journal of Automation Technology 7, nr 4 (5.07.2013): 451–60. http://dx.doi.org/10.20965/ijat.2013.p0451.
Pełny tekst źródłaHorszczaruk, E., P. Sikora i P. Łukowski. "Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects". Archives of Civil Engineering 62, nr 3 (1.09.2016): 61–74. http://dx.doi.org/10.1515/ace-2015-0083.
Pełny tekst źródłaChaoui, Fahd, Otman Aghzout, Mounia Chakkour i Mounir El Yakhloufi. "Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications". Active and Passive Electronic Components 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/6523046.
Pełny tekst źródłaGao, Lei, Zhihao Li, Jie Li, Zhen Wang, Haiming Jiang i Mingyang Wang. "Application of Fiber Grating Sensing in Similar Model Impact Tests of Underground Engineering". Geofluids 2023 (14.04.2023): 1–18. http://dx.doi.org/10.1155/2023/8185870.
Pełny tekst źródłaChen, Chun-Bing, Hsuan-Ling Kao, Li-Chun Chang, Cheng-Lin Cho, Yi-Chen Lin, C. C. Huang, C. C. Mo, Wen-Hung Chung i Hsien-Chin Chiu. "Fabrication of Inkjet-Printed Carbon Nanotube for Enhanced Mechanical and Strain-Sensing Performance". ECS Journal of Solid State Science and Technology 10, nr 12 (1.12.2021): 121001. http://dx.doi.org/10.1149/2162-8777/ac40d4.
Pełny tekst źródłaYang, Yongqiang, Yongsong Tan, Qun Wang, Yihu Shu, Qinsheng Wang i Yunjie Yin. "Application of AgNPs/rGO Modified Nylon Fabric in Strain Sensing". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012017. http://dx.doi.org/10.1088/1742-6596/2109/1/012017.
Pełny tekst źródłaIrani, Farid Sayar, Ali Hosseinpour Shafaghi, Melih Can Tasdelen, Tugce Delipinar, Ceyda Elcin Kaya, Guney Guven Yapici i Murat Kaya Yapici. "Graphene as a Piezoresistive Material in Strain Sensing Applications". Micromachines 13, nr 1 (12.01.2022): 119. http://dx.doi.org/10.3390/mi13010119.
Pełny tekst źródłaRozprawy doktorskie na temat "Strain Sensing Application"
Liang, Sijia [Verfasser], Roger [Gutachter] Wördenweber, Markus [Gutachter] Grüninger i Joachim [Gutachter] Hemberger. "Surface Acoustic Waves in Strain-Engineered Thin (K,Na)NbO3 Films: From Basic Research to Application in Molecular Sensing / Sijia Liang ; Gutachter: Roger Wördenweber, Markus Grüninger, Joachim Hemberger". Köln : Universitäts- und Stadtbibliothek Köln, 2021. http://d-nb.info/1229616705/34.
Pełny tekst źródłaHarold, Douglas A. "An Evaluation of Optical Fiber Strain Sensing for Engineering Applications". Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/41239.
Pełny tekst źródłaMaster of Science
White, Julia. "OPTIC FIBER SENSOR FOR STRAIN MEASUREMENTS IN HIGH TEMPERATURE SENSING APPLICATIONS". International Foundation for Telemetering, 2017. http://hdl.handle.net/10150/626969.
Pełny tekst źródłaNguyen, Quan H. "Physical Sensing Effects in AlGaN/GaN Heterostructure and Applications". Thesis, Griffith University, 2021. http://hdl.handle.net/10072/411259.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Njuguna, Michael Kamau. "Characterisation of multi wall carbon nanotube–polymer composites for strain sensing applications". Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/54671/1/Michael_Kamau_Njuguna_Thesis.pdf.
Pełny tekst źródłaBhatia, Vikram. "Properties and sensing applications of long-period gratings". Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-11082006-133634/.
Pełny tekst źródłaKe, Kai. "Piezoresistive Behavior of Carbon Nanotube based Poly(vinylidene fluoride) Nanocomposites towards Strain Sensing Applications". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-201959.
Pełny tekst źródłaNaeli, Kianoush. "Optimization of piezoresistive cantilevers for static and dynamic sensing applications". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28247.
Pełny tekst źródłaCommittee Chair: Brand, Oliver; Committee Member: Adibi, Ali; Committee Member: Allen, Mark G.; Committee Member: Bottomley, Lawrence A.; Committee Member: Degertekin, F. Levent.
Melilli, Giuseppe. "Irradiation and nanostructuration of piezoelectric polymers for nano-sensoring and harvesting energy applications". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX072/document.
Pełny tekst źródłaThe versatility of the track-etching technique has allowed to investigate deeper the direct and inverse piezoelectric effect of a polarized Poly(vinylidene fluoride) (PVDF) film in building nanostructured hybrid Nickel nanowires (Ni NWs)/PVDF membrane. The magnetic properties of the Ni NW, such as anisotropic magneto resistance (AMR), are exploited to investigate the response of the magnetization to a mechanical deformation of the PVDF matrix. In particular, the deformations were induced either by thermo-mechanical or an electro-mechanical (inverse piezoelectric effect) stress. The sensitivity of the single NW has allowed to determine the amplitude and direction of a mechanical stress exerted at the nano-scale by the PVDF matrix. The outstanding resistance of the direct piezoelectric response of polarized PVDF film to radiation, such as SHI and e-beam, (doses range < 100kGy) was reported. Beyond the conservation of the piezoelectric response, in this dose range, irradiation defects (chain scissions, increase of the crystalline -phase, crosslinking) had a significative impact on the polymer material. All these defects, ones predominant above the gel dose (herein 10 kGy), and the other ones below, compensate their antagonistic effects towards the globally unchanged piezoelectric responses. Motivated by the high radiation resistance of the PVDF in terms of piezoelectric response, the idea was to exploit Ni NWs array embedded in the polarized PVDF membrane to study the influence of the Ni NWs on the piezoelectric response in view of harvesting energy application. The presence of the Ni NWs array leads a non-negligible increase of the piezoelectric efficiency. Related to the presence of the NWs, an increase of the dielectric permittivity in the nanostructured PVDF was also reported. An interfacial polarization between the Ni NWs and the PVDF matrix could explain the higher efficiency value respect to nanoporous PVDF, without NWs
Ke, Kai [Verfasser], Brigitte [Akademischer Betreuer] Voit i Karl [Akademischer Betreuer] Schulte. "Piezoresistive Behavior of Carbon Nanotube based Poly(vinylidene fluoride) Nanocomposites towards Strain Sensing Applications / Kai Ke. Betreuer: Brigitte Voit. Gutachter: Brigitte Voit ; Karl Schulte". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://d-nb.info/1100356053/34.
Pełny tekst źródłaKsiążki na temat "Strain Sensing Application"
Zhu, Ren, i Rusen Yang. Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70038-0.
Pełny tekst źródłaTurner, Roderick David. Dual wavelength fiber-optic polarimeter for path-integrated strain sensing: application to the measurement of local slope on a flexible beam. [Downsview, Ontario]: University of Toronto, Institute for Aerospace Studies, 1991.
Znajdź pełny tekst źródłaTurner, Roderick David. Dual wavelength fiber-optic polarimeter for path-integrated strain sensing: application to the measurement of local slope on a flexible beam. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 1990.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., red. Strain sensing technology for high temperature applications. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Znajdź pełny tekst źródłaZhu, Ren, i Rusen Yang. Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Springer, 2019.
Znajdź pełny tekst źródłaZhu, Ren, i Rusen Yang. Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Springer, 2018.
Znajdź pełny tekst źródłaTurner, Roderick David. Dual wavelength fibre-optic polarimeter for path-integrated strain sensing: application to the measurement of local slope on a flexible beam. 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Strain Sensing Application"
Ben-Simon, U., S. Shoham, R. Davidi, N. Goldstein, I. Kressel i M. Tur. "Application of Optical Fiber-Based Strain Sensing for the Full-Scale Static and Fatigue Tests of Aircraft Structure". W ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing, 847–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21503-3_67.
Pełny tekst źródłaWilson, Daniel L. "Sensing Change: Measuring Cookstove Adoption with Internet-of-Things Sensors". W Introduction to Development Engineering, 399–427. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86065-3_15.
Pełny tekst źródłaReinsch, Thomas, Philippe Jousset i Charlotte M. Krawczyk. "Fiber Optic Distributed Strain Sensing for Seismic Applications". W Encyclopedia of Solid Earth Geophysics, 1–5. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_284-1.
Pełny tekst źródłaReinsch, Thomas, Philippe Jousset i Charlotte M. Krawczyk. "Fiber Optic Distributed Strain Sensing for Seismic Applications". W Encyclopedia of Solid Earth Geophysics, 379–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_284.
Pełny tekst źródłaWanser, Keith H., Michael Haselhuhn i Michael Lafond. "High Temperature Distributed Strain and Temperature Sensing Using OTDR". W Applications of Fiber Optic Sensors in Engineering Mechanics, 194–209. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872628953.ch13.
Pełny tekst źródłaTao, Yi-Dan, i Guo-Ying Gu. "Design of a Soft Pneumatic Actuator Finger with Self-strain Sensing". W Intelligent Robotics and Applications, 140–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65289-4_14.
Pełny tekst źródłaZhang, Q., C. Zheng, K. Sagoe-Crentsil i W. Duan. "Transfer and Substrate Effects on 2D Materials for Their Sensing and Energy Applications in Civil Engineering". W Lecture Notes in Civil Engineering, 409–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_42.
Pełny tekst źródłaMore, Swapnil, i Akshay Naik. "Fabrication of 2D NEMS on Flexible Substrates for Strain Engineering in Sensing Applications". W Springer Proceedings in Physics, 45–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_8.
Pełny tekst źródłaNöther, Nils, i Massimo Facchini. "Distributed Fiber-Optic Strain Sensing: Field Applications in Pile Foundations and Concrete Beams". W Lecture Notes in Civil Engineering, 167–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74258-4_11.
Pełny tekst źródłaLee, S. C., M. F. Chong, B. P. Tee i Mohamad Hisham. "Field applications of fiber optic strain sensing systems in geotechnical and structural engineering". W Smart Geotechnics for Smart Societies, 1395–98. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003299127-205.
Pełny tekst źródłaStreszczenia konferencji na temat "Strain Sensing Application"
Hew, Ya Yu. "Wireless Strain Sensing for Spacecraft Application". W 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-124.
Pełny tekst źródłaAl-Rubaiai, Mohammed, Ryohei Tsuruta, Umesh Gandhi, Chuan Wang i Xiaobo Tan. "3D-Printed Stretchable Strain Sensor With Application to Wind Sensing". W ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-7945.
Pełny tekst źródłaMenendez, Jose M., i J. Alfredo Guemes. "Bragg-grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates". W SPIE's 7th Annual International Symposium on Smart Structures and Materials, redaktorzy Richard O. Claus i William B. Spillman, Jr. SPIE, 2000. http://dx.doi.org/10.1117/12.388115.
Pełny tekst źródłaBrown, Anthony W., Michael D. DeMerchant, Xiaoyi Bao i Robert E. Steffen. "Strain monitoring of the Rollinsford bridge using distributed sensing". W 2000 International Conference on Application of Photonic Technology (ICAPT 2000), redaktorzy Roger A. Lessard i George A. Lampropoulos. SPIE, 2000. http://dx.doi.org/10.1117/12.406360.
Pełny tekst źródłaSharma, Anup, L. Phillips, Sherrie J. Burgett, Paul B. Ruffin i W. Long. "Strain sensing in fiber optic coils with buried Bragg gratings". W 2000 International Conference on Application of Photonic Technology (ICAPT 2000), redaktorzy Roger A. Lessard i George A. Lampropoulos. SPIE, 2000. http://dx.doi.org/10.1117/12.406361.
Pełny tekst źródłaBouhamed, Ayda, Abderrahmane Benchirouf, Abdulkadir Sanli, Christian Muller i Olfa Kanoun. "Piezoresistive behavior of Epoxy/MWCNTs nanocomposites thin films for strain sensing application". W 2015 12th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2015. http://dx.doi.org/10.1109/ssd.2015.7348241.
Pełny tekst źródłaQiu, Huacheng, Yanguang Yang, Fu Min, Wei Xue, Zengling Ran, Zhiqiang Liu i Zhendong Xie. "Hydrodynamic measurements in water tunnel using enhanced-sensitivity all-fiber Fabry-Perot strain gauges". W Optical Sensing and Imaging Technology and Application, redaktorzy Dong Liu, Haimei Gong, Mircea Guina i Jin Lu. SPIE, 2018. http://dx.doi.org/10.1117/12.2504339.
Pełny tekst źródłaSmith, Frank J., i Faeze Ghofrani. "Smart Switch: The Application of Fiber Optic Continuous Strain Sensing to the Railroad Turnouts". W 2022 Joint Rail Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/jrc2022-80438.
Pełny tekst źródłaKadota, M., K. Yamada, H. Kobayashi i S. Tanaka. "Development of acoustic optics tunable filter and its application to strain sensing system". W 2009 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2009. http://dx.doi.org/10.1109/isaf.2009.5307562.
Pełny tekst źródłaYang, Xiaokai, Meng Li, Dong Wei i Xiaoli Kou. "Application of Large Strain Fiber Grating Sensing Technology in Aircraft Structural Health Monitoring". W 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). IEEE, 2020. http://dx.doi.org/10.1109/iciba50161.2020.9277124.
Pełny tekst źródłaRaporty organizacyjne na temat "Strain Sensing Application"
Barsoum, Michel W. Kinking Nonlinear Elastic Solids for Load Bearing Damping and Strain Sensing Applications. Fort Belvoir, VA: Defense Technical Information Center, luty 2011. http://dx.doi.org/10.21236/ada545946.
Pełny tekst źródła