Gotowa bibliografia na temat „Stochastic time domain spectral element method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stochastic time domain spectral element method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stochastic time domain spectral element method"
Kronowetter, Felix, Lennart Moheit, Martin Eser, Kian K. Sepahvand i Steffen Marburg. "Spectral Stochastic Infinite Element Method in Vibroacoustics". Journal of Theoretical and Computational Acoustics 28, nr 02 (czerwiec 2020): 2050009. http://dx.doi.org/10.1142/s2591728520500097.
Pełny tekst źródłaSharma, Himanshu, Shuvajit Mukherjee i Ranjan Ganguli. "Uncertainty analysis of higher-order sandwich beam using a hybrid stochastic time-domain spectral element method". International Journal for Computational Methods in Engineering Science and Mechanics 21, nr 5 (19.08.2020): 215–30. http://dx.doi.org/10.1080/15502287.2020.1808912.
Pełny tekst źródłaZakian, P., i N. Khaji. "A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain". Meccanica 51, nr 4 (24.07.2015): 893–920. http://dx.doi.org/10.1007/s11012-015-0242-9.
Pełny tekst źródłaBeresnev, Igor A., i Gail M. Atkinson. "Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites". Bulletin of the Seismological Society of America 88, nr 6 (1.12.1998): 1392–401. http://dx.doi.org/10.1785/bssa0880061392.
Pełny tekst źródłaLi, Xiaozhen, Yan Zhu i Zhibin Jin. "Nonstationary Random Vibration Performance of Train-Bridge Coupling System with Vertical Track Irregularity". Shock and Vibration 2016 (2016): 1–19. http://dx.doi.org/10.1155/2016/1450895.
Pełny tekst źródłaMukherjee, Shuvajit, S. Gopalakrishnan i Ranjan Ganguli. "Stochastic time domain spectral element analysis of beam structures". Acta Mechanica 230, nr 5 (12.11.2018): 1487–512. http://dx.doi.org/10.1007/s00707-018-2272-6.
Pełny tekst źródłaStavroulakis, G., D. G. Giovanis, V. Papadopoulos i M. Papadrakakis. "A GPU domain decomposition solution for spectral stochastic finite element method". Computer Methods in Applied Mechanics and Engineering 327 (grudzień 2017): 392–410. http://dx.doi.org/10.1016/j.cma.2017.08.042.
Pełny tekst źródłaMukherjee, Shuvajit, S. Gopalakrishnan i Ranjan Ganguli. "Time domain spectral element-based wave finite element method for periodic structures". Acta Mechanica 232, nr 6 (15.03.2021): 2269–96. http://dx.doi.org/10.1007/s00707-020-02917-y.
Pełny tekst źródłaPind, Finnur, Allan P. Engsig-Karup, Cheol-Ho Jeong, Jan S. Hesthaven, Mikael S. Mejling i Jakob Strømann-Andersen. "Time domain room acoustic simulations using the spectral element method". Journal of the Acoustical Society of America 145, nr 6 (czerwiec 2019): 3299–310. http://dx.doi.org/10.1121/1.5109396.
Pełny tekst źródłaLee, Joon-Ho, i Qing Huo Liu. "A 3-D Spectral-Element Time-Domain Method for Electromagnetic Simulation". IEEE Transactions on Microwave Theory and Techniques 55, nr 5 (maj 2007): 983–91. http://dx.doi.org/10.1109/tmtt.2007.895398.
Pełny tekst źródłaRozprawy doktorskie na temat "Stochastic time domain spectral element method"
Davies, Richard Wyn. "A hybrid spectral element method for the time domain solution of wave scattering problems". Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa42272.
Pełny tekst źródłaMukherjee, Shuvajit. "Uncertainty modeling and analysis of aerospace structures". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4336.
Pełny tekst źródłaChen, Jiefu. "A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations". Diss., 2010. http://hdl.handle.net/10161/3071.
Pełny tekst źródłaIn this study we propose a fast hybrid spectral-element time-domain (SETD) / finite-element time-domain (FETD) method for transient analysis of multiscale electromagnetic problems, where electrically fine structures with details much smaller than a typical wavelength and electrically coarse structures comparable to or larger than a typical wavelength coexist.
Simulations of multiscale electromagnetic problems, such as electromagnetic interference (EMI), electromagnetic compatibility (EMC), and electronic packaging, can be very challenging for conventional numerical methods. In terms of spatial discretization, conventional methods use a single mesh for the whole structure, thus a high discretization density required to capture the geometric characteristics of electrically fine structures will inevitably lead to a large number of wasted unknowns in the electrically coarse parts. This issue will become especially severe for orthogonal grids used by the popular finite-difference time-domain (FDTD) method. In terms of temporal integration, dense meshes in electrically fine domains will make the time step size extremely small for numerical methods with explicit time-stepping schemes. Implicit schemes can surpass stability criterion limited by the Courant-Friedrichs-Levy (CFL) condition. However, due to the large system matrices generated by conventional methods, it is almost impossible to employ implicit schemes to the whole structure for time-stepping.
To address these challenges, we propose an efficient hybrid SETD/FETD method for transient electromagnetic simulations by taking advantages of the strengths of these two methods while avoiding their weaknesses in multiscale problems. More specifically, a multiscale structure is divided into several subdomains based on the electrical size of each part, and a hybrid spectral-element / finite-element scheme is proposed for spatial discretization. The hexahedron-based spectral elements with higher interpolation degrees are efficient in modeling electrically coarse structures, and the tetrahedron-based finite elements with lower interpolation degrees are flexible in discretizing electrically fine structures with complex shapes. A non-spurious finite element method (FEM) as well as a non-spurious spectral element method (SEM) is proposed to make the hybrid SEM/FEM discretization work. For time integration we employ hybrid implicit / explicit (IMEX) time-stepping schemes, where explicit schemes are used for electrically coarse subdomains discretized by coarse spectral element meshes, and implicit schemes are used to overcome the CFL limit for electrically fine subdomains discretized by dense finite element meshes. Numerical examples show that the proposed hybrid SETD/FETD method is free of spurious modes, is flexible in discretizing sophisticated structure, and is more efficient than conventional methods for multiscale electromagnetic simulations.
Dissertation
Munian, Rajendra Kumar. "Time Domain Spectral Finite Element Simulation of Ultrasonic Wave Propagation in Composite with Defects". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5502.
Pełny tekst źródłaKulkarni, Raghavendra B. "Inverse problems solution using spectral finite element methods". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5471.
Pełny tekst źródłaKsiążki na temat "Stochastic time domain spectral element method"
Ostachowicz, W. M. Guided waves in structures for SHM: The time-domain spectral element method. Chichester, West Sussex: Wiley, 2012.
Znajdź pełny tekst źródłaOstachowicz, Wieslaw, Pawel Kudela, Marek Krawczuk i Arkadiusz Zak. Guided Waves in Structures for SHM: The Time - Domain Spectral Element Method. Wiley & Sons, Incorporated, John, 2011.
Znajdź pełny tekst źródłaOstachowicz, Wieslaw, Pawel Kudela, Marek Krawczuk i Arkadiusz Zak. Guided Waves in Structures for SHM: The Time - Domain Spectral Element Method. Wiley & Sons, Incorporated, John, 2011.
Znajdź pełny tekst źródłaOstachowicz, Wieslaw, Pawel Kudela, Marek Krawczuk i Arkadiusz Zak. Guided Waves in Structures for SHM: The Time - Domain Spectral Element Method. Wiley & Sons, Incorporated, John, 2011.
Znajdź pełny tekst źródłaOstachowicz, Wieslaw, Pawel Kudela, Marek Krawczuk i Arkadiusz Zak. Guided Waves in Structures for SHM: The Time - Domain Spectral Element Method. Wiley & Sons, Limited, John, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Stochastic time domain spectral element method"
Yeung, Carman, i Ching Tai Ng. "Analysis of Scattering and Mode Conversion of Torsional Guided Waves by Cracks in Pipes Using Time-Domain Spectral Element Method". W Lecture Notes in Civil Engineering, 1123–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8079-6_105.
Pełny tekst źródłaSarkar, Avirup, i Ashutosh Bagchi. "Stress Analysis of Concrete Gravity Dams Using Time Domain Spectral Finite Element Method Under the Action of Seismic Ground Motion". W Lecture Notes in Civil Engineering, 623–31. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39117-0_63.
Pełny tekst źródłaStreszczenia konferencji na temat "Stochastic time domain spectral element method"
Boehm, Christian, Naiara Korta Martiartu, Ivana Jovanović Balic, Andreas Fichtner i Nicolas Vinard. "Time-domain spectral-element ultrasound waveform tomography using a stochastic quasi-Newton method". W Ultrasonic Imaging and Tomography, redaktorzy Neb Duric i Brett C. Byram. SPIE, 2018. http://dx.doi.org/10.1117/12.2293299.
Pełny tekst źródłaFeigl, Kathleen, i Deepthika C. Senaratne. "Calculation of Polymer Flow Using Micro-Macro Simulations". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61575.
Pełny tekst źródłaXue, Yilun, Qiang Ren i Yuanguo Zhou. "Transient Thermal Analysis Based on Spectral Element Time Domain Method". W 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2019. http://dx.doi.org/10.1109/csqrwc.2019.8799354.
Pełny tekst źródłaXu, H., Q. S. Yan, Y. H. Wu, Z. B. Ye i R. S. Chen. "Analysis of transient electromagnetic scattering using spectral-element time-domain method". W 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2012. http://dx.doi.org/10.1109/icmmt.2012.6230067.
Pełny tekst źródłaKong, Lingrong, i Shitao Chen. "Spectral element time-domain method simulation of the Maxwell-Schrödinger system". W 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS). IEEE, 2017. http://dx.doi.org/10.1109/edaps.2017.8277006.
Pełny tekst źródłaXu, H., D. Z. Ding i R. S. Chen. "Analysis of PIN diode limiter circuit using spectral-element time-domain method". W 2015 Asia-Pacific Microwave Conference (APMC). IEEE, 2015. http://dx.doi.org/10.1109/apmc.2015.7413550.
Pełny tekst źródłaXu, H., Z. He, D. Z. Ding i R. S. Chen. "Scattering analysis of magnetized plasma objects with spectral-element time-domain method". W 2016 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2016. http://dx.doi.org/10.1109/compem.2016.7588570.
Pełny tekst źródłaSheng, Y. J., R. S. Chen i Z. B. Ye. "Transient analysis of IMPATT oscillator with extended spectral-element time-domain method". W 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2012. http://dx.doi.org/10.1109/icmmt.2012.6230145.
Pełny tekst źródłaYujie Yan, Aiqiang Cheng, Dazhi Ding i Rushan Chen. "Simulation of a submicron ballistic diode with spectral-element time-domain method". W 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735846.
Pełny tekst źródłaJoon-Ho Lee i Qing H. Liu. "Nanophotonic Applications of the Discontinuous Spectral Element Time-Domain (DG-SETD) Method". W 2007 IEEE Antennas and Propagation Society International Symposium. IEEE, 2007. http://dx.doi.org/10.1109/aps.2007.4396506.
Pełny tekst źródła