Gotowa bibliografia na temat „Stochastic Newton algorithms”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stochastic Newton algorithms”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stochastic Newton algorithms"
Kovacevic, Ivana, Branko Kovacevic i Zeljko Djurovic. "On strong consistency of a class of recursive stochastic Newton-Raphson type algorithms with application to robust linear dynamic system identification". Facta universitatis - series: Electronics and Energetics 21, nr 1 (2008): 1–21. http://dx.doi.org/10.2298/fuee0801001k.
Pełny tekst źródłaYousefi, Mahsa, i Ángeles Martínez. "Deep Neural Networks Training by Stochastic Quasi-Newton Trust-Region Methods". Algorithms 16, nr 10 (20.10.2023): 490. http://dx.doi.org/10.3390/a16100490.
Pełny tekst źródłaForneron, Jean-Jacques, i Serena Ng. "Estimation and Inference by Stochastic Optimization: Three Examples". AEA Papers and Proceedings 111 (1.05.2021): 626–30. http://dx.doi.org/10.1257/pandp.20211038.
Pełny tekst źródłaCao, Pengfei, i Xionglin Luo. "Performance analysis of multi-innovation stochastic Newton recursive algorithms". Digital Signal Processing 56 (wrzesień 2016): 15–23. http://dx.doi.org/10.1016/j.dsp.2016.05.005.
Pełny tekst źródłaGhoshdastidar, Debarghya, Ambedkar Dukkipati i Shalabh Bhatnagar. "Newton-based stochastic optimization using q-Gaussian smoothed functional algorithms". Automatica 50, nr 10 (październik 2014): 2606–14. http://dx.doi.org/10.1016/j.automatica.2014.08.021.
Pełny tekst źródłaShao, Wei, i Guangbao Guo. "Multiple-Try Simulated Annealing Algorithm for Global Optimization". Mathematical Problems in Engineering 2018 (17.07.2018): 1–11. http://dx.doi.org/10.1155/2018/9248318.
Pełny tekst źródłaGao, Guohua, Gaoming Li i Albert Coburn Reynolds. "A Stochastic Optimization Algorithm for Automatic History Matching". SPE Journal 12, nr 02 (1.06.2007): 196–208. http://dx.doi.org/10.2118/90065-pa.
Pełny tekst źródłaWang, Qing, i Yang Cao. "Stochastic Finite Element Method for Nonlinear Dynamic Problem with Random Parameters". Advanced Materials Research 189-193 (luty 2011): 1348–57. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1348.
Pełny tekst źródłaWang, Yanshan, In-Chan Choi i Hongfang Liu. "Generalized ensemble model for document ranking in information retrieval". Computer Science and Information Systems 14, nr 1 (2017): 123–51. http://dx.doi.org/10.2298/csis160229042w.
Pełny tekst źródłaClayton, R. P., i R. F. Martinez-Botas. "Application of generic algorithms in aerodynamic optimisation design procedures". Aeronautical Journal 108, nr 1090 (grudzień 2004): 611–20. http://dx.doi.org/10.1017/s0001924000000440.
Pełny tekst źródłaRozprawy doktorskie na temat "Stochastic Newton algorithms"
Lu, Wei. "Μéthοdes stοchastiques du secοnd οrdre pοur le traitement séquentiel de dοnnées massives". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR13.
Pełny tekst źródłaWith the rapid development of technologies and the acquisition of big data, methods capable of processing data sequentially (online) have become indispensable. Among these methods, stochastic gradient algorithms have been established for estimating the minimizer of a function expressed as the expectation of a random function. Although they have become essential, these algorithms encounter difficulties when the problem is ill-conditioned. In this thesis, we focus on second-order stochastic algorithms, such as those of the Newton type, and their applications to various statistical and optimization problems. After establishing theoretical foundations and exposing the motivations that lead us to explore stochastic Newton algorithms, we develop the various contributions of this thesis. The first contribution concerns the study and development of stochastic Newton algorithms for ridge linear regression and ridge logistic regression. These algorithms are based on the Riccati formula (Sherman-Morrison) to recursively estimate the inverse of the Hessian. As the acquisition of big data is generally accompanied by a contamination of the latter, in a second contribution, we focus on the online estimation of the geometric median, which is a robust indicator, i.e., not very sensitive to the presence of atypical data. More specifically, we propose a new stochastic Newton estimator to estimate the geometric median. In the first two contributions, the estimators of the Hessians' inverses are constructed using the Riccati formula, but this is only possible for certain functions. Thus, our third contribution introduces a new Robbins-Monro type method for online estimation of the Hessian's inverse, allowing us then to develop universal stochastic Newton algorithms. Finally, our last contribution focuses on Full Adagrad type algorithms, where the difficulty lies in the fact that there is an adaptive step based on the square root of the inverse of the gradient's covariance. We thus propose a Robbins-Monro type algorithm to estimate this matrix, allowing us to propose a recursive approach for Full AdaGrad and its streaming version, with reduced computational costs. For all the new estimators we propose, we establish their convergence rates as well as their asymptotic efficiency. Moreover, we illustrate the efficiency of these algorithms using numerical simulations and by applying them to real data
Stewart, Alistair Mark. "Efficient algorithms for infinite-state recursive stochastic models and Newton's method". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10001.
Pełny tekst źródłaLakshmanan, K. "Online Learning and Simulation Based Algorithms for Stochastic Optimization". Thesis, 2012. http://etd.iisc.ac.in/handle/2005/3245.
Pełny tekst źródłaLakshmanan, K. "Online Learning and Simulation Based Algorithms for Stochastic Optimization". Thesis, 2012. http://hdl.handle.net/2005/3245.
Pełny tekst źródłaMondal, Akash. "Stochastic Optimization And Its Application In Reinforcement Learning". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6086.
Pełny tekst źródłaGupta, Saurabh. "Development Of Deterministic And Stochastic Algorithms For Inverse Problems Of Optical Tomography". Thesis, 2013. https://etd.iisc.ac.in/handle/2005/2608.
Pełny tekst źródłaGupta, Saurabh. "Development Of Deterministic And Stochastic Algorithms For Inverse Problems Of Optical Tomography". Thesis, 2013. http://etd.iisc.ernet.in/handle/2005/2608.
Pełny tekst źródłaMartin, James Robert Ph D. "A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion". Thesis, 2015. http://hdl.handle.net/2152/31374.
Pełny tekst źródłaCzęści książek na temat "Stochastic Newton algorithms"
Bhatnagar, S., H. Prasad i L. Prashanth. "Newton-Based Smoothed Functional Algorithms". W Stochastic Recursive Algorithms for Optimization, 133–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_8.
Pełny tekst źródłaBhatnagar, S., H. Prasad i L. Prashanth. "Newton-Based Simultaneous Perturbation Stochastic Approximation". W Stochastic Recursive Algorithms for Optimization, 105–31. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_7.
Pełny tekst źródłaHe, Sailing, Staffan Strom i Vaughan H. Weston. "Wave-Splittings Combined With Optimization Techniques". W Time Domain Wave-Splittings and Inverse Problems, 185–228. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198565499.003.0005.
Pełny tekst źródłaArsham, Hossein, i Shaya Sheikh. "Organizational Performance-Design Process". W Advances in Business Information Systems and Analytics, 54–84. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7272-7.ch005.
Pełny tekst źródłaJabari, Farkhondeh, Heresh Seyedia, Sajad Najafi Ravadanegh i Behnam Mohammadi Ivatloo. "Stochastic Contingency Analysis Based on Voltage Stability Assessment in Islanded Power System Considering Load Uncertainty Using MCS and k-PEM". W Advances in Computer and Electrical Engineering, 12–36. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9911-3.ch002.
Pełny tekst źródłaStreszczenia konferencji na temat "Stochastic Newton algorithms"
Graillat, Stef, Fabienne Jezequel, Enzo Queiros Martins i Maxime Spyropoulos. "Computing multiple roots of polynomials in stochastic arithmetic with Newton method and approximate GCD". W 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2021. http://dx.doi.org/10.1109/synasc54541.2021.00020.
Pełny tekst źródłaArun, C. O., B. N. Rao i S. M. Sivakumar. "Stochastic Damage Growth Analysis Using EFGM". W ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61882.
Pełny tekst źródłaZhang, Shumao, Fahim Forouzanfar i Xiao-Hui Wu. "Stein Variational Gradient Descent for Reservoir History Matching Problems". W SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212190-ms.
Pełny tekst źródłaEltahan, Esmail, Faruk Omer Alpak i Kamy Sepehrnoori. "A Quasi-Newton Method for Well Location Optimization Under Uncertainty". W SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212212-ms.
Pełny tekst źródłaFang, X., i J. Tang. "Granular Damping Analysis Using a Direct Simulation Monte Carlo Approach". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14448.
Pełny tekst źródła