Gotowa bibliografia na temat „Stochastic Multi-armed Bandit”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stochastic Multi-armed Bandit”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Stochastic Multi-armed Bandit"

1

Xiong, Guojun, i Jian Li. "Decentralized Stochastic Multi-Player Multi-Armed Walking Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 9 (26.06.2023): 10528–36. http://dx.doi.org/10.1609/aaai.v37i9.26251.

Pełny tekst źródła
Streszczenie:
Multi-player multi-armed bandit is an increasingly relevant decision-making problem, motivated by applications to cognitive radio systems. Most research for this problem focuses exclusively on the settings that players have full access to all arms and receive no reward when pulling the same arm. Hence all players solve the same bandit problem with the goal of maximizing their cumulative reward. However, these settings neglect several important factors in many real-world applications, where players have limited access to a dynamic local subset of arms (i.e., an arm could sometimes be ``walking'' and not accessible to the player). To this end, this paper proposes a multi-player multi-armed walking bandits model, aiming to address aforementioned modeling issues. The goal now is to maximize the reward, however, players can only pull arms from the local subset and only collect a full reward if no other players pull the same arm. We adopt Upper Confidence Bound (UCB) to deal with the exploration-exploitation tradeoff and employ distributed optimization techniques to properly handle collisions. By carefully integrating these two techniques, we propose a decentralized algorithm with near-optimal guarantee on the regret, and can be easily implemented to obtain competitive empirical performance.
Style APA, Harvard, Vancouver, ISO itp.
2

Ciucanu, Radu, Pascal Lafourcade, Gael Marcadet i Marta Soare. "SAMBA: A Generic Framework for Secure Federated Multi-Armed Bandits". Journal of Artificial Intelligence Research 73 (23.02.2022): 737–65. http://dx.doi.org/10.1613/jair.1.13163.

Pełny tekst źródła
Streszczenie:
The multi-armed bandit is a reinforcement learning model where a learning agent repeatedly chooses an action (pull a bandit arm) and the environment responds with a stochastic outcome (reward) coming from an unknown distribution associated with the chosen arm. Bandits have a wide-range of application such as Web recommendation systems. We address the cumulative reward maximization problem in a secure federated learning setting, where multiple data owners keep their data stored locally and collaborate under the coordination of a central orchestration server. We rely on cryptographic schemes and propose Samba, a generic framework for Secure federAted Multi-armed BAndits. Each data owner has data associated to a bandit arm and the bandit algorithm has to sequentially select which data owner is solicited at each time step. We instantiate Samba for five bandit algorithms. We show that Samba returns the same cumulative reward as the nonsecure versions of bandit algorithms, while satisfying formally proven security properties. We also show that the overhead due to cryptographic primitives is linear in the size of the input, which is confirmed by our proof-of-concept implementation.
Style APA, Harvard, Vancouver, ISO itp.
3

Wan, Zongqi, Zhijie Zhang, Tongyang Li, Jialin Zhang i Xiaoming Sun. "Quantum Multi-Armed Bandits and Stochastic Linear Bandits Enjoy Logarithmic Regrets". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 8 (26.06.2023): 10087–94. http://dx.doi.org/10.1609/aaai.v37i8.26202.

Pełny tekst źródła
Streszczenie:
Multi-arm bandit (MAB) and stochastic linear bandit (SLB) are important models in reinforcement learning, and it is well-known that classical algorithms for bandits with time horizon T suffer from the regret of at least the square root of T. In this paper, we study MAB and SLB with quantum reward oracles and propose quantum algorithms for both models with the order of the polylog T regrets, exponentially improving the dependence in terms of T. To the best of our knowledge, this is the first provable quantum speedup for regrets of bandit problems and in general exploitation in reinforcement learning. Compared to previous literature on quantum exploration algorithms for MAB and reinforcement learning, our quantum input model is simpler and only assumes quantum oracles for each individual arm.
Style APA, Harvard, Vancouver, ISO itp.
4

Lesage-Landry, Antoine, i Joshua A. Taylor. "The Multi-Armed Bandit With Stochastic Plays". IEEE Transactions on Automatic Control 63, nr 7 (lipiec 2018): 2280–86. http://dx.doi.org/10.1109/tac.2017.2765501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Esfandiari, Hossein, Amin Karbasi, Abbas Mehrabian i Vahab Mirrokni. "Regret Bounds for Batched Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 8 (18.05.2021): 7340–48. http://dx.doi.org/10.1609/aaai.v35i8.16901.

Pełny tekst źródła
Streszczenie:
We present simple algorithms for batched stochastic multi-armed bandit and batched stochastic linear bandit problems. We prove bounds for their expected regrets that improve and extend the best known regret bounds of Gao, Han, Ren, and Zhou (NeurIPS 2019), for any number of batches. In particular, our algorithms in both settings achieve the optimal expected regrets by using only a logarithmic number of batches. We also study the batched adversarial multi-armed bandit problem for the first time and provide the optimal regret, up to logarithmic factors, of any algorithm with predetermined batch sizes.
Style APA, Harvard, Vancouver, ISO itp.
6

Dzhoha, A. S. "Sequential resource allocation in a stochastic environment: an overview and numerical experiments". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, nr 3 (2021): 13–25. http://dx.doi.org/10.17721/1812-5409.2021/3.1.

Pełny tekst źródła
Streszczenie:
In this paper, we consider policies for the sequential resource allocation under the multi-armed bandit problem in a stochastic environment. In this model, an agent sequentially selects an action from a given set and an environment reveals a reward in return. In the stochastic setting, each action is associated with a probability distribution with parameters that are not known in advance. The agent makes a decision based on the history of the chosen actions and obtained rewards. The objective is to maximize the total cumulative reward, which is equivalent to the loss minimization. We provide a brief overview of the sequential analysis and an appearance of the multi-armed bandit problem as a formulation in the scope of the sequential resource allocation theory. Multi-armed bandit classification is given with an analysis of the existing policies for the stochastic setting. Two different approaches are shown to tackle the multi-armed bandit problem. In the frequentist view, the confidence interval is used to express the exploration-exploitation trade-off. In the Bayesian approach, the parameter that needs to be estimated is treated as a random variable. Shown, how this model can be modelled with help of the Markov decision process. In the end, we provide numerical experiments in order to study the effectiveness of these policies.
Style APA, Harvard, Vancouver, ISO itp.
7

Juditsky, A., A. V. Nazin, A. B. Tsybakov i N. Vayatis. "Gap-free Bounds for Stochastic Multi-Armed Bandit". IFAC Proceedings Volumes 41, nr 2 (2008): 11560–63. http://dx.doi.org/10.3182/20080706-5-kr-1001.01959.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Allesiardo, Robin, Raphaël Féraud i Odalric-Ambrym Maillard. "The non-stationary stochastic multi-armed bandit problem". International Journal of Data Science and Analytics 3, nr 4 (30.03.2017): 267–83. http://dx.doi.org/10.1007/s41060-017-0050-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Huo, Xiaoguang, i Feng Fu. "Risk-aware multi-armed bandit problem with application to portfolio selection". Royal Society Open Science 4, nr 11 (listopad 2017): 171377. http://dx.doi.org/10.1098/rsos.171377.

Pełny tekst źródła
Streszczenie:
Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return.
Style APA, Harvard, Vancouver, ISO itp.
10

Xu, Lily, Elizabeth Bondi, Fei Fang, Andrew Perrault, Kai Wang i Milind Tambe. "Dual-Mandate Patrols: Multi-Armed Bandits for Green Security". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 17 (18.05.2021): 14974–82. http://dx.doi.org/10.1609/aaai.v35i17.17757.

Pełny tekst źródła
Streszczenie:
Conservation efforts in green security domains to protect wildlife and forests are constrained by the limited availability of defenders (i.e., patrollers), who must patrol vast areas to protect from attackers (e.g., poachers or illegal loggers). Defenders must choose how much time to spend in each region of the protected area, balancing exploration of infrequently visited regions and exploitation of known hotspots. We formulate the problem as a stochastic multi-armed bandit, where each action represents a patrol strategy, enabling us to guarantee the rate of convergence of the patrolling policy. However, a naive bandit approach would compromise short-term performance for long-term optimality, resulting in animals poached and forests destroyed. To speed up performance, we leverage smoothness in the reward function and decomposability of actions. We show a synergy between Lipschitz-continuity and decomposition as each aids the convergence of the other. In doing so, we bridge the gap between combinatorial and Lipschitz bandits, presenting a no-regret approach that tightens existing guarantees while optimizing for short-term performance. We demonstrate that our algorithm, LIZARD, improves performance on real-world poaching data from Cambodia.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Stochastic Multi-armed Bandit"

1

Wang, Kehao. "Multi-channel opportunistic access : a restless multi-armed bandit perspective". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00832569.

Pełny tekst źródła
Streszczenie:
In the thesis, we address the fundamental problem of opportunistic spectrum access in a multi-channel communication system. Specifically, we consider a communication system in which a user has access to multiple channels, but is limited to sensing and transmitting only on one at a given time. We explore how the smart user should exploit past observations and the knowledge of the stochastic properties of these channels to maximize its transmission rate by switching channels opportunistically. Formally, we provide a generic analysis on the opportunistic spectrum access problem by casting the problem into the restless multi-armed bandit (RMAB) problem, one of the most well-known generalizations of the classic multi-armed bandit (MAB) problem, which is of fundamental importance in stochastic decision theory. Despite the significant research efforts in the field, the RMAB problem in its generic form still remains open. Until today, very little result is reported on the structure of the optimal policy. Obtaining the optimal policy for a general RMAB problem is often intractable due to the exponential computation complexity. Hence, a natural alternative is to seek a simple myopic policy maximizing the short-term reward. Therefore, we develop three axioms characterizing a family of functions which we refer to as regular functions, which are generic and practically important. We then establish the optimality of the myopic policy when the reward function can be expressed as a regular function and the discount factor is bounded by a closed-form threshold determined by the reward function. We also illustrate how the derived results, generic in nature, are applied to analyze a class of RMAB problems arising from multi-channel opportunistic access. Next, we further investigate the more challenging problem where the user has to decide the number of channels to sense in each slot in order to maximize its utility (e.g., throughput). After showing the exponential complexity of the problem, we develop a heuristic v-step look-ahead strategy. In the developed strategy, the parameter v allows to achieve a desired tradeoff between social efficiency and computation complexity. We demonstrate the benefits of the proposed strategy via numerical experiments on several typical settings.
Style APA, Harvard, Vancouver, ISO itp.
2

CELLA, LEONARDO. "EFFICIENCY AND REALISM IN STOCHASTIC BANDITS". Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/807862.

Pełny tekst źródła
Streszczenie:
This manuscript is dedicated to the analysis of the application of stochastic bandits to the recommender systems domain. Here a learning agent sequentially recommends one item from a catalog of available alternatives. Consequently, the environment returns a reward that is a noisy observation of the rating associated to the suggested item. The peculiarity of the bandit setting is that no information is given about not recommended products, and the collected rewards are the only information available to the learning agent. By relying on them the learner adapts his strategy towards reaching its learning objective, that is, maximizing the cumulative reward collected over all the interactions. In this dissertation we cover the investigation of two main research directions: the development of efficient learning algorithms and the introduction of a more realistic learning setting. In addressing the former objective we propose two approaches to speedup the learning process. The first solution aims to reduce the computational costs associated to the learning procedure, while the second's goal is to boost the learning phase by relying on data corresponding to terminated recommendation sessions. Regarding the latter research line, we propose a novel setting representing use-cases that do not fit in the standard bandit model.
Style APA, Harvard, Vancouver, ISO itp.
3

Ménard, Pierre. "Sur la notion d'optimalité dans les problèmes de bandit stochastique". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30087/document.

Pełny tekst źródła
Streszczenie:
Cette thèse s'inscrit dans les domaines de l'apprentissage statistique et de la statistique séquentielle. Le cadre principal est celui des problèmes de bandit stochastique à plusieurs bras. Dans une première partie, on commence par revisiter les bornes inférieures sur le regret. On obtient ainsi des bornes non-asymptotiques dépendantes de la distribution que l'on prouve de manière très simple en se limitant à quelques propriétés bien connues de la divergence de Kullback-Leibler. Puis, on propose des algorithmes pour la minimisation du regret dans les problèmes de bandit stochastique paramétrique dont les bras appartiennent à une certaine famille exponentielle ou non-paramétrique en supposant seulement que les bras sont à support dans l'intervalle unité, pour lesquels on prouve l'optimalité asymptotique (au sens de la borne inférieure de Lai et Robbins) et l'optimalité minimax. On analyse aussi la complexité pour l'échantillonnage séquentielle visant à identifier la distribution ayant la moyenne la plus proche d'un seuil fixé, avec ou sans l'hypothèse que les moyennes des bras forment une suite croissante. Ce travail est motivé par l'étude des essais cliniques de phase I, où l'hypothèse de croissance est naturelle. Finalement, on étend l'inégalité de Fano qui contrôle la probabilité d'évènements disjoints avec une moyenne de divergences de Kullback-leibler à des variables aléatoires arbitraires bornées sur l'intervalle unité. Plusieurs nouvelles applications en découlent, les plus importantes étant une borne inférieure sur la vitesse de concentration de l'a posteriori Bayésien et une borne inférieure sur le regret pour un problème de bandit non-stochastique
The topics addressed in this thesis lie in statistical machine learning and sequential statistic. Our main framework is the stochastic multi-armed bandit problems. In this work we revisit lower bounds on the regret. We obtain non-asymptotic, distribution-dependent bounds and provide simple proofs based only on well-known properties of Kullback-Leibler divergence. These bounds show in particular that in the initial phase the regret grows almost linearly, and that the well-known logarithmic growth of the regret only holds in a final phase. Then, we propose algorithms for regret minimization in stochastic bandit models with exponential families of distributions or with distribution only assumed to be supported by the unit interval, that are simultaneously asymptotically optimal (in the sense of Lai and Robbins lower bound) and minimax optimal. We also analyze the sample complexity of sequentially identifying the distribution whose expectation is the closest to some given threshold, with and without the assumption that the mean values of the distributions are increasing. This work is motivated by phase I clinical trials, a practically important setting where the arm means are increasing by nature. Finally we extend Fano's inequality, which controls the average probability of (disjoint) events in terms of the average of some Kullback-Leibler divergences, to work with arbitrary unit-valued random variables. Several novel applications are provided, in which the consideration of random variables is particularly handy. The most important applications deal with the problem of Bayesian posterior concentration (minimax or distribution-dependent) rates and with a lower bound on the regret in non-stochastic sequential learning
Style APA, Harvard, Vancouver, ISO itp.
4

Ruíz, Hernández Diego. "Essays on indexability of stochastic sheduling and dynamic allocation problems". Doctoral thesis, Universitat Pompeu Fabra, 2007. http://hdl.handle.net/10803/7347.

Pełny tekst źródła
Streszczenie:
In this Thesis, we first deploy Gittins index theory to establish the indexability of inter-alia general families of restless bandits that arise in problems of stochastic scheduling with switching penalties and machine maintenance. We also give formulae for the resulting indices. Numerical investigations testify the strong performance of the index heuristics.

The second class of problems concerns two families of Markov decision problems. The spinning plates problem concerns the optimal management of a portfolio of assets whose yields grow with investment but otherwise decline. In the model of asset exploitation called the squad system, the yield from an asset declines when it is utilised but will recover when the asset is at rest. Simply stated conditions are given which guarantee general indexability of the problem together with necessary and sufficient conditions for strict indexability. The index heuristics, which emerge from the analysis, are assessed numerically and found to perform strongly.
Style APA, Harvard, Vancouver, ISO itp.
5

Degenne, Rémy. "Impact of structure on the design and analysis of bandit algorithms". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7179.

Pełny tekst źródła
Streszczenie:
Cette thèse porte sur des problèmes d'apprentissage statistique séquentiel, dits bandits stochastiques à plusieurs bras. Dans un premier temps un algorithme de bandit est présenté. L'analyse de cet algorithme, comme la majorité des preuves usuelles de bornes de regret pour algorithmes de bandits, utilise des intervalles de confiance pour les moyennes des bras. Dans un cadre paramétrique,on prouve des inégalités de concentration quantifiant la déviation entre le paramètre d'une distribution et son estimation empirique, afin d'obtenir de tels intervalles. Ces inégalités sont exprimées en fonction de la divergence de Kullback-Leibler. Trois extensions du problème de bandits sont ensuite étudiées. Premièrement on considère le problème dit de semi-bandit combinatoire, dans lequel un algorithme choisit un ensemble de bras et la récompense de chaque bras est observée. Le regret minimal atteignable dépend alors de la corrélation entre les bras. On considère ensuite un cadre où on change le mécanisme d'obtention des observations provenant des différents bras. Une source de difficulté du problème de bandits est la rareté de l'information: seul le bras choisi est observé. On montre comment on peut tirer parti de la disponibilité d'observations supplémentaires gratuites, ne participant pas au regret. Enfin, une nouvelle famille d'algorithmes est présentée afin d'obtenir à la fois des guaranties de minimisation de regret et d'identification du meilleur bras. Chacun des algorithmes réalise un compromis entre regret et temps d'identification. On se penche dans un deuxième temps sur le problème dit d'exploration pure, dans lequel un algorithme n'est pas évalué par son regret mais par sa probabilité d'erreur quant à la réponse à une question posée sur le problème. On détermine la complexité de tels problèmes et on met au point des algorithmes approchant cette complexité
In this Thesis, we study sequential learning problems called stochastic multi-armed bandits. First a new bandit algorithm is presented. The analysis of that algorithm uses confidence intervals on the mean of the arms reward distributions, as most bandit proofs do. In a parametric setting, we derive concentration inequalities which quantify the deviation between the mean parameter of a distribution and its empirical estimation in order to obtain confidence intervals. These inequalities are presented as bounds on the Kullback-Leibler divergence. Three extensions of the stochastic multi-armed bandit problem are then studied. First we study the so-called combinatorial semi-bandit problem, in which an algorithm chooses a set of arms and the reward of each of these arms is observed. The minimal attainable regret then depends on the correlation between the arm distributions. We consider then a setting in which the observation mechanism changes. One source of difficulty of the bandit problem is the scarcity of information: only the arm pulled is observed. We show how to use efficiently eventual supplementary free information (which do not influence the regret). Finally a new family of algorithms is introduced to obtain both regret minimization and est arm identification regret guarantees. Each algorithm of the family realizes a trade-off between regret and time needed to identify the best arm. In a second part we study the so-called pure exploration problem, in which an algorithm is not evaluated on its regret but on the probability that it returns a wrong answer to a question on the arm distributions. We determine the complexity of such problems and design with performance close to that complexity
Style APA, Harvard, Vancouver, ISO itp.
6

Magureanu, Stefan. "Structured Stochastic Bandits". Licentiate thesis, KTH, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182816.

Pełny tekst źródła
Streszczenie:
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlated arms. Particularly, we investigate the case when the expected rewards are a Lipschitz function of the arm, and the learning to rank problem, as viewed from a MAB perspective. For the former, we derive a problem specific lower bound and propose both an asymptotically optimal algorithm (OSLB) and a (pareto)optimal, algorithm (POSLB). For the latter, we construct the regret lower bound and determine its closed form for some particular settings, as well as propose two asymptotically optimal algorithms PIE and PIE-C. For all algorithms mentioned above, we present performance analysis in the form of theoretical regret guarantees as well as numerical evaluation on artificial datasets as well as real-world datasets, in the case of PIE and PIE-C.

QC 20160223

Style APA, Harvard, Vancouver, ISO itp.
7

Hadiji, Hédi. "On some adaptivity questions in stochastic multi-armed bandits". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM021.

Pełny tekst źródła
Streszczenie:
Cette thèse s'inscrit dans le domaine des statistiques séquentielles. Le cadre principal étudié est celui des bandits stochastiques à plusieurs bras, cadre idéal qui modélise le dilemme exploration-exploitation face à des choix répétés. La thèse est composée de quatre chapitres, précédés d'une introduction. Dans la première partie du corps de la thèse, on présente un nouvel algorithme capable d'atteindre des garanties optimales à la fois d'un point de vue distribution-dépendent et distribution-free. Les deux chapitres suivants sont consacrés à des questions dites d'adaptation. D'abord, on propose un algorithme capable de s'adapter à la régularité inconnue dans des problèmes de bandits continus, mettant en évidence le coût polynomial de l'adaptation en bandits continus. Ensuite, on considère un problème d'adaptation au supports pour des problèmes de bandits à K bras, à distributions de paiements bornés dans des intervalles inconnus. Enfin, dans un dernier chapitre un peu à part, on étudie un cadre légèrement différent de bandits préservant la diversité. On montre que le regret optimal dans ce cadre croît à des vitesses différentes des vitesses classiques, avec notamment la possibilité d'atteindre un regret constant sous certaines hypothèses
The main topics adressed in this thesis lie in the general domain of sequential learning, and in particular stochastic multi-armed bandits. The thesis is divided into four chapters and an introduction. In the first part of the main body of the thesis, we design a new algorithm achieving, simultaneously, distribution-dependent and distribution-free optimal guarantees. The next two chapters are devoted to adaptivity questions. First, in the context of continuum-armed bandits, we present a new algorithm which, for the first time, does not require the knowledge of the regularity of the bandit problem it is facing. Then, we study the issue of adapting to the unknown support of the payoffs in bounded K-armed bandits. We provide a procedure that (almost) obtains the same guarantees as if it was given the support in advance. In the final chapter, we study a slightly different bandit setting, designed to enforce diversity-preserving conditions on the strategies. We show that the optimal regert in this setting at a speed that is quite different from the traditional bandit setting. In particular, we observe that bounded regret is possible under some specific hypotheses
Style APA, Harvard, Vancouver, ISO itp.
8

McInerney, Robert E. "Decision making under uncertainty". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a34e87ad-8330-42df-8ba6-d55f10529331.

Pełny tekst źródła
Streszczenie:
Operating and interacting in an environment requires the ability to manage uncertainty and to choose definite courses of action. In this thesis we look to Bayesian probability theory as the means to achieve the former, and find that through rigorous application of the rules it prescribes we can, in theory, solve problems of decision making under uncertainty. Unfortunately such methodology is intractable in realworld problems, and thus approximation of one form or another is inevitable. Many techniques make use of heuristic procedures for managing uncertainty. We note that such methods suffer unreliable performance and rely on the specification of ad-hoc variables. Performance is often judged according to long-term asymptotic performance measures which we also believe ignores the most complex and relevant parts of the problem domain. We therefore look to develop principled approximate methods that preserve the meaning of Bayesian theory but operate with the scalability of heuristics. We start doing this by looking at function approximation in continuous state and action spaces using Gaussian Processes. We develop a novel family of covariance functions which allow tractable inference methods to accommodate some of the uncertainty lost by not following full Bayesian inference. We also investigate the exploration versus exploitation tradeoff in the context of the Multi-Armed Bandit, and demonstrate that principled approximations behave close to optimal behaviour and perform significantly better than heuristics on a range of experimental test beds.
Style APA, Harvard, Vancouver, ISO itp.
9

Cayci, Semih. "Online Learning for Optimal Control of Communication and Computing Systems". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595516470389826.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Couetoux, Adrien. "Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision Making Problems". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112192.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, nous avons étudié les problèmes de décisions séquentielles, avec comme application la gestion de stocks d'énergie. Traditionnellement, ces problèmes sont résolus par programmation dynamique stochastique. Mais la grande dimension, et la non convexité du problème, amènent à faire des simplifications sur le modèle pour pouvoir faire fonctionner ces méthodes.Nous avons donc étudié une méthode alternative, qui ne requiert pas de simplifications du modèle: Monte Carlo Tree Search (MCTS). Nous avons commencé par étendre le MCTS classique (qui s’applique aux domaines finis et déterministes) aux domaines continus et stochastiques. Pour cela, nous avons utilisé la méthode de Double Progressive Widening (DPW), qui permet de gérer le ratio entre largeur et profondeur de l’arbre, à l’aide de deux méta paramètres. Nous avons aussi proposé une heuristique nommée Blind Value (BV) pour améliorer la recherche de nouvelles actions, en utilisant l’information donnée par les simulations passées. D’autre part, nous avons étendu l’heuristique RAVE aux domaines continus. Enfin, nous avons proposé deux nouvelles méthodes pour faire remonter l’information dans l’arbre, qui ont beaucoup amélioré la vitesse de convergence sur deux cas tests.Une part importante de notre travail a été de proposer une façon de mêler MCTS avec des heuristiques rapides pré-existantes. C’est une idée particulièrement intéressante dans le cas de la gestion d’énergie, car ces problèmes sont pour le moment résolus de manière approchée. Nous avons montré comment utiliser Direct Policy Search (DPS) pour rechercher une politique par défaut efficace, qui est ensuite utilisée à l’intérieur de MCTS. Les résultats expérimentaux sont très encourageants.Nous avons aussi appliqué MCTS à des processus markoviens partiellement observables (POMDP), avec comme exemple le jeu de démineur. Dans ce cas, les algorithmes actuels ne sont pas optimaux, et notre approche l’est, en transformant le POMDP en MDP, par un changement de vecteur d’état.Enfin, nous avons utilisé MCTS dans un cadre de méta-bandit, pour résoudre des problèmes d’investissement. Le choix d’investissement est fait par des algorithmes de bandits à bras multiples, tandis que l’évaluation de chaque bras est faite par MCTS.Une des conclusions importantes de ces travaux est que MCTS en continu a besoin de très peu d’hypothèses (uniquement un modèle génératif du problème), converge vers l’optimum, et peut facilement améliorer des méthodes suboptimales existantes
In this thesis, we study sequential decision making problems, with a focus on the unit commitment problem. Traditionally solved by dynamic programming methods, this problem is still a challenge, due to its high dimension and to the sacrifices made on the accuracy of the model to apply state of the art methods. We investigate on the applicability of Monte Carlo Tree Search methods for this problem, and other problems that are single player, stochastic and continuous sequential decision making problems. We started by extending the traditional finite state MCTS to continuous domains, with a method called Double Progressive Widening (DPW). This method relies on two hyper parameters, and determines the ratio between width and depth in the nodes of the tree. We developed a heuristic called Blind Value (BV) to improve the exploration of new actions, using the information from past simulations. We also extended the RAVE heuristic to continuous domain. Finally, we proposed two new ways of backing up information through the tree, that improved the convergence speed considerably on two test cases.An important part of our work was to propose a way to mix MCTS with existing powerful heuristics, with the application to energy management in mind. We did so by proposing a framework that allows to learn a good default policy by Direct Policy Search (DPS), and to include it in MCTS. The experimental results are very positive.To extend the reach of MCTS, we showed how it could be used to solve Partially Observable Markovian Decision Processes, with an application to game of Mine Sweeper, for which no consistent method had been proposed before.Finally, we used MCTS in a meta-bandit framework to solve energy investment problems: the investment decision was handled by classical bandit algorithms, while the evaluation of each investment was done by MCTS.The most important take away is that continuous MCTS has almost no assumption (besides the need for a generative model), is consistent, and can easily improve existing suboptimal solvers by using a method similar to what we proposed with DPS
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Stochastic Multi-armed Bandit"

1

Bubeck, Sébastian, i Cesa-Bianchi Nicolò. Regret Analysis of Stochastic and Nonstochastic Multi-Armed Bandit Problems. Now Publishers, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Stochastic Multi-armed Bandit"

1

Zheng, Rong, i Cunqing Hua. "Stochastic Multi-armed Bandit". W Wireless Networks, 9–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50502-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Agrawal, Shipra. "The Stochastic Multi-Armed Bandit Problem". W Springer Series in Supply Chain Management, 3–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01926-5_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Panaganti, Kishan, Dileep Kalathil i Pravin Varaiya. "Bounded Regret for Finitely Parameterized Multi-Armed Bandits". W Stochastic Analysis, Filtering, and Stochastic Optimization, 411–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98519-6_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Maillard, Odalric-Ambrym. "Robust Risk-Averse Stochastic Multi-armed Bandits". W Lecture Notes in Computer Science, 218–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40935-6_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Stochastic Multi-armed Bandit"

1

Vakili, Sattar, Qing Zhao i Yuan Zhou. "Time-varying stochastic multi-armed bandit problems". W 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014. http://dx.doi.org/10.1109/acssc.2014.7094845.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chang, Hyeong Soo, Michael C. Fu i Steven I. Marcus. "Adversarial Multi-Armed Bandit Approach to Stochastic Optimization". W Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377724.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Xiaofang, Qian Zhou, Peng Zhang i Quan Liu. "Adaptive Exploration in Stochastic Multi-armed Bandit Problem". W MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/mol2net-02-03848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kveton, Branislav, Csaba Szepesvári, Mohammad Ghavamzadeh i Craig Boutilier. "Perturbed-History Exploration in Stochastic Multi-Armed Bandits". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/386.

Pełny tekst źródła
Streszczenie:
We propose an online algorithm for cumulative regret minimization in a stochastic multi-armed bandit. The algorithm adds O(t) i.i.d. pseudo-rewards to its history in round t and then pulls the arm with the highest average reward in its perturbed history. Therefore, we call it perturbed-history exploration (PHE). The pseudo-rewards are carefully designed to offset potentially underestimated mean rewards of arms with a high probability. We derive near-optimal gap-dependent and gap-free bounds on the n-round regret of PHE. The key step in our analysis is a novel argument that shows that randomized Bernoulli rewards lead to optimism. Finally, we empirically evaluate PHE and show that it is competitive with state-of-the-art baselines.
Style APA, Harvard, Vancouver, ISO itp.
5

Carlsson, Emil, Devdatt Dubhashi i Fredrik D. Johansson. "Thompson Sampling for Bandits with Clustered Arms". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/305.

Pełny tekst źródła
Streszczenie:
We propose algorithms based on a multi-level Thompson sampling scheme, for the stochastic multi-armed bandit and its contextual variant with linear expected rewards, in the setting where arms are clustered. We show, both theoretically and empirically, how exploiting a given cluster structure can significantly improve the regret and computational cost compared to using standard Thompson sampling. In the case of the stochastic multi-armed bandit we give upper bounds on the expected cumulative regret showing how it depends on the quality of the clustering. Finally, we perform an empirical evaluation showing that our algorithms perform well compared to previously proposed algorithms for bandits with clustered arms.
Style APA, Harvard, Vancouver, ISO itp.
6

Muller, Matias I., Patricio E. Valenzuela, Alexandre Proutiere i Cristian R. Rojas. "A stochastic multi-armed bandit approach to nonparametric H∞-norm estimation". W 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8264343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhao, Tianchi, Bo Jiang, Ming Li i Ravi Tandon. "Regret Analysis of Stochastic Multi-armed Bandit Problem with Clustered Information Feedback". W 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9207422.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Madhushani, Udari, i Naomi Ehrich Leonard. "Heterogeneous Stochastic Interactions for Multiple Agents in a Multi-armed Bandit Problem". W 2019 18th European Control Conference (ECC). IEEE, 2019. http://dx.doi.org/10.23919/ecc.2019.8796036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wang, Xiong, i Riheng Jia. "Mean Field Equilibrium in Multi-Armed Bandit Game with Continuous Reward". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/429.

Pełny tekst źródła
Streszczenie:
Mean field game facilitates analyzing multi-armed bandit (MAB) for a large number of agents by approximating their interactions with an average effect. Existing mean field models for multi-agent MAB mostly assume a binary reward function, which leads to tractable analysis but is usually not applicable in practical scenarios. In this paper, we study the mean field bandit game with a continuous reward function. Specifically, we focus on deriving the existence and uniqueness of mean field equilibrium (MFE), thereby guaranteeing the asymptotic stability of the multi-agent system. To accommodate the continuous reward function, we encode the learned reward into an agent state, which is in turn mapped to its stochastic arm playing policy and updated using realized observations. We show that the state evolution is upper semi-continuous, based on which the existence of MFE is obtained. As the Markov analysis is mainly for the case of discrete state, we transform the stochastic continuous state evolution into a deterministic ordinary differential equation (ODE). On this basis, we can characterize a contraction mapping for the ODE to ensure a unique MFE for the bandit game. Extensive evaluations validate our MFE characterization, and exhibit tight empirical regret of the MAB problem.
Style APA, Harvard, Vancouver, ISO itp.
10

Romano, Giulia, Andrea Agostini, Francesco Trovò, Nicola Gatti i Marcello Restelli. "Multi-Armed Bandit Problem with Temporally-Partitioned Rewards: When Partial Feedback Counts". W Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/472.

Pełny tekst źródła
Streszczenie:
There is a rising interest in industrial online applications where data becomes available sequentially. Inspired by the recommendation of playlists to users where their preferences can be collected during the listening of the entire playlist, we study a novel bandit setting, namely Multi-Armed Bandit with Temporally-Partitioned Rewards (TP-MAB), in which the stochastic reward associated with the pull of an arm is partitioned over a finite number of consecutive rounds following the pull. This setting, unexplored so far to the best of our knowledge, is a natural extension of delayed-feedback bandits to the case in which rewards may be dilated over a finite-time span after the pull instead of being fully disclosed in a single, potentially delayed round. We provide two algorithms to address TP-MAB problems, namely, TP-UCB-FR and TP-UCB-EW, which exploit the partial information disclosed by the reward collected over time. We show that our algorithms provide better asymptotical regret upper bounds than delayed-feedback bandit algorithms when a property characterizing a broad set of reward structures of practical interest, namely α-smoothness, holds. We also empirically evaluate their performance across a wide range of settings, both synthetically generated and from a real-world media recommendation problem.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Stochastic Multi-armed Bandit"

1

Glazebrook, Kevin D., Donald P. Gaver i Patricia A. Jacobs. Military Stochastic Scheduling Treated As a 'Multi-Armed Bandit' Problem. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2001. http://dx.doi.org/10.21236/ada385864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii