Gotowa bibliografia na temat „Stochastic Fokker-Planck”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stochastic Fokker-Planck”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stochastic Fokker-Planck"
Liu, Chang, Chuo Chang i Zhe Chang. "Distribution of Return Transition for Bohm-Vigier Stochastic Mechanics in Stock Market". Symmetry 15, nr 7 (17.07.2023): 1431. http://dx.doi.org/10.3390/sym15071431.
Pełny tekst źródłaCoghi, Michele, i Benjamin Gess. "Stochastic nonlinear Fokker–Planck equations". Nonlinear Analysis 187 (październik 2019): 259–78. http://dx.doi.org/10.1016/j.na.2019.05.003.
Pełny tekst źródłaChavanis, Pierre-Henri. "Generalized Stochastic Fokker-Planck Equations". Entropy 17, nr 5 (13.05.2015): 3205–52. http://dx.doi.org/10.3390/e17053205.
Pełny tekst źródłaLin, Y. K., i G. Q. Cai. "Equivalent Stochastic Systems". Journal of Applied Mechanics 55, nr 4 (1.12.1988): 918–22. http://dx.doi.org/10.1115/1.3173742.
Pełny tekst źródłaKOTELENEZ, PETER M. "A QUASI-LINEAR STOCHASTIC FOKKER–PLANCK EQUATION IN σ-FINITE MEASURES". Stochastics and Dynamics 08, nr 03 (wrzesień 2008): 475–504. http://dx.doi.org/10.1142/s021949370800241x.
Pełny tekst źródłaSun, Xu, Xiaofan Li i Yayun Zheng. "Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise". Stochastics and Dynamics 17, nr 05 (23.09.2016): 1750033. http://dx.doi.org/10.1142/s0219493717500332.
Pełny tekst źródłaHirpara, Ravish Himmatlal, i Shambhu Nath Sharma. "An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations". International Journal of System Dynamics Applications 9, nr 1 (styczeń 2020): 18–43. http://dx.doi.org/10.4018/ijsda.2020010102.
Pełny tekst źródłaAnnunziato, Mario, i Alfio Borzì. "OPTIMAL CONTROL OF PROBABILITY DENSITY FUNCTIONS OF STOCHASTIC PROCESSES". Mathematical Modelling and Analysis 15, nr 4 (15.11.2010): 393–407. http://dx.doi.org/10.3846/1392-6292.2010.15.393-407.
Pełny tekst źródłaANNUNZIATO, M., i A. BORZI. "FOKKER–PLANCK-BASED CONTROL OF A TWO-LEVEL OPEN QUANTUM SYSTEM". Mathematical Models and Methods in Applied Sciences 23, nr 11 (23.07.2013): 2039–64. http://dx.doi.org/10.1142/s0218202513500255.
Pełny tekst źródłaRENNER, CHRISTOPH, J. PEINKE i R. FRIEDRICH. "Experimental indications for Markov properties of small-scale turbulence". Journal of Fluid Mechanics 433 (25.04.2001): 383–409. http://dx.doi.org/10.1017/s0022112001003597.
Pełny tekst źródłaRozprawy doktorskie na temat "Stochastic Fokker-Planck"
Adesina, Owolabi Abiona. "Statistical Modelling and the Fokker-Planck Equation". Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1177.
Pełny tekst źródłaGuillouzic, Steve. "Fokker-Planck approach to stochastic delay differential equations". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58279.pdf.
Pełny tekst źródłaNoble, Patrick. "Stochastic processes in Astrophysics". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10013.
Pełny tekst źródłaLi, Wuchen. "A study of stochastic differential equations and Fokker-Planck equations with applications". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54999.
Pełny tekst źródłaMiserocchi, Andrea. "The Fokker-Planck equation as model for the stochastic gradient descent in deep learning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18290/.
Pełny tekst źródłaЮщенко, Ольга Володимирівна, Ольга Владимировна Ющенко, Olha Volodymyrivna Yushchenko, Тетяна Іванівна Жиленко, Татьяна Ивановна Жиленко i Tetiana Ivanivna Zhylenko. "Description of the Stochastic Condensation Process under Quasi-Equilibrium Conditions". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34910.
Pełny tekst źródłaДенисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, V. V. Reva i O. O. Bondar. "Generalized Fokker-Planck Equation for the Nanoparticle Magnetic Moment Driven by Poisson White Noise". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35373.
Pełny tekst źródłaLi, Yao. "Stochastic perturbation theory and its application to complex biological networks -- a quantification of systematic features of biological networks". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49013.
Pełny tekst źródłaVellmer, Sebastian. "Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Pełny tekst źródłaThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Sjöberg, Paul. "Numerical Methods for Stochastic Modeling of Genes and Proteins". Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8293.
Pełny tekst źródłaKsiążki na temat "Stochastic Fokker-Planck"
Frank, T. D. Nonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2004.
Znajdź pełny tekst źródłaGrasman, Johan. Asymptotic methods for the Fokker-Planck equation and the exit problem in applications. Berlin: Springer, 1999.
Znajdź pełny tekst źródłaChirikjian, Gregory S. Stochastic models, information theory, and lie groups. Boston: Birkhäuser, 2009.
Znajdź pełny tekst źródłaFokker-Planck-Kolmogorov equations. Providence, Rhode Island: American Mathematical Society, 2015.
Znajdź pełny tekst źródłaKrylov, Nicolai V., Michael Rockner, Vladimir I. Bogachev i Stanislav V. Shaposhnikov. Fokker-Planck-Kolmogorov Equations. American Mathematical Society, 2015.
Znajdź pełny tekst źródłaNonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2005.
Znajdź pełny tekst źródłaPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2014.
Znajdź pełny tekst źródłaPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2016.
Znajdź pełny tekst źródłaPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaMcClintock, P. V. E., i Frank Moss. Noise in Nonlinear Dynamical Systems Vol. 1: Theory of Continuous Fokker-Planck Systems. Cambridge University Press, 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "Stochastic Fokker-Planck"
Loos, Sarah A. M. "Fokker-Planck Equations". W Stochastic Systems with Time Delay, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_3.
Pełny tekst źródłaLoos, Sarah A. M. "Infinite Fokker-Planck Hierarchy". W Stochastic Systems with Time Delay, 121–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_5.
Pełny tekst źródłaRodean, Howard C. "The Fokker-Planck Equation". W Stochastic Lagrangian Models of Turbulent Diffusion, 19–24. Boston, MA: American Meteorological Society, 1996. http://dx.doi.org/10.1007/978-1-935704-11-9_5.
Pełny tekst źródłaQian, Hong, i Hao Ge. "Stochastic Processes, Fokker-Planck Equation". W Encyclopedia of Systems Biology, 2000–2004. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_279.
Pełny tekst źródłaBogachev, Vladimir I. "Stationary Fokker–Planck–Kolmogorov Equations". W Stochastic Partial Differential Equations and Related Fields, 3–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_1.
Pełny tekst źródłaDa Prato, Giuseppe. "Fokker–Planck Equations in Hilbert Spaces". W Stochastic Partial Differential Equations and Related Fields, 101–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_5.
Pełny tekst źródłaMöhl, Dieter. "The Distribution Function and Fokker-Planck Equations". W Stochastic Cooling of Particle Beams, 91–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34979-9_7.
Pełny tekst źródłaCarmichael, Howard J. "Fokker—Planck Equations and Stochastic Differential Equations". W Statistical Methods in Quantum Optics 1, 147–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03875-8_5.
Pełny tekst źródłaShaposhnikov, Stanislav V. "Nonlinear Fokker–Planck–Kolmogorov Equations for Measures". W Stochastic Partial Differential Equations and Related Fields, 367–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_24.
Pełny tekst źródłaYoshida, T., i S. Yanagita. "A Stochastic Simulation Method for Fokker-Planck Equations". W Numerical Astrophysics, 399–400. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_121.
Pełny tekst źródłaStreszczenia konferencji na temat "Stochastic Fokker-Planck"
Metzler, Ralf. "From the Langevin equation to the fractional Fokker–Planck equation". W Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302409.
Pełny tekst źródłaHolliday, G. S., i Surendra Singh. "Second harmonic generation in the positive P-representation". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wr6.
Pełny tekst źródłaAllison, A. "Stochastic Resonance, Brownian Ratchets and the Fokker-Planck Equation". W UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS: UPoN 2002: Third International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1584877.
Pełny tekst źródłaWedig, Walter V., i Utz von Wagner. "Stochastic Car Vibrations With Strong Nonlinearities". W ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21605.
Pełny tekst źródłaWang, Yan. "Simulating Drift-Diffusion Processes With Generalized Interval Probability". W ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70699.
Pełny tekst źródłaClaussen, Jens Christian. "Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations". W Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-1.
Pełny tekst źródłaKumar, Mrinal, Suman Chakravorty i John Junkins. "Computational Nonlinear Stochastic Control Based on the Fokker-Planck-Kolmogorov Equation". W AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6477.
Pełny tekst źródłaHorowicz, R. J., i L. A. Lugiato. "Noise Effects In Optical Bistability". W Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wd2.
Pełny tekst źródłaKikuchi, T., S. Kawata i T. Katayama. "Numerical solver with cip method for Fokker Planck equation of stochastic cooling". W 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440417.
Pełny tekst źródłaDas, Shreepriya, Haris Vikalo i Arjang Hassibi. "Stochastic modeling of reaction kinetics in biosensors using the Fokker Planck equation". W 2009 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2009. http://dx.doi.org/10.1109/gensips.2009.5174363.
Pełny tekst źródłaRaporty organizacyjne na temat "Stochastic Fokker-Planck"
Marriner, John. Simulations of Transverse Stochastic Cooling Using the Fokker-Planck Equation. Office of Scientific and Technical Information (OSTI), marzec 1998. http://dx.doi.org/10.2172/1985058.
Pełny tekst źródłaKumar, Manish, i Subramanian Ramakrishnan. Modeling and Analysis of Stochastic Dynamics and Emergent Phenomena in Swarm Robotic Systems Using the Fokker-Planck Formalism. Fort Belvoir, VA: Defense Technical Information Center, październik 2010. http://dx.doi.org/10.21236/ada547014.
Pełny tekst źródłaYu, D., i S. Chakravorty. A Multi-Resolution Approach to the Fokker-Planck-Kolmogorov Equation with Application to Stochastic Nonlinear Filtering and Optimal Design. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2012. http://dx.doi.org/10.21236/ada582272.
Pełny tekst źródłaSnyder, Victor A., Dani Or, Amos Hadas i S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, kwiecień 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Pełny tekst źródła