Gotowa bibliografia na temat „Stochastic Differential Algebraic Equations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stochastic Differential Algebraic Equations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stochastic Differential Algebraic Equations"
Alabert, Aureli, i Marco Ferrante. "Linear stochastic differential-algebraic equations with constant coefficients". Electronic Communications in Probability 11 (2006): 316–35. http://dx.doi.org/10.1214/ecp.v11-1236.
Pełny tekst źródłaHigueras, I., J. Moler, F. Plo i M. San Miguel. "Urn models and differential algebraic equations". Journal of Applied Probability 40, nr 2 (czerwiec 2003): 401–12. http://dx.doi.org/10.1239/jap/1053003552.
Pełny tekst źródłaHigueras, I., J. Moler, F. Plo i M. San Miguel. "Urn models and differential algebraic equations". Journal of Applied Probability 40, nr 02 (czerwiec 2003): 401–12. http://dx.doi.org/10.1017/s0021900200019380.
Pełny tekst źródłaPulch, Roland. "Stochastic collocation and stochastic Galerkin methods for linear differential algebraic equations". Journal of Computational and Applied Mathematics 262 (maj 2014): 281–91. http://dx.doi.org/10.1016/j.cam.2013.10.046.
Pełny tekst źródłaLi, Xun, Jingtao Shi i Jiongmin Yong. "Mean-field linear-quadratic stochastic differential games in an infinite horizon". ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 81. http://dx.doi.org/10.1051/cocv/2021078.
Pełny tekst źródłaCONG, NGUYEN DINH, i NGUYEN THI THE. "LYAPUNOV SPECTRUM OF NONAUTONOMOUS LINEAR STOCHASTIC DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX-1". Stochastics and Dynamics 12, nr 04 (10.10.2012): 1250002. http://dx.doi.org/10.1142/s0219493712500025.
Pełny tekst źródłaLv, Xueqin, i Jianfang Gao. "Treatment for third-order nonlinear differential equations based on the Adomian decomposition method". LMS Journal of Computation and Mathematics 20, nr 1 (2017): 1–10. http://dx.doi.org/10.1112/s1461157017000018.
Pełny tekst źródłaDrăgan, Vasile, Ivan Ganchev Ivanov i Ioan-Lucian Popa. "A Game — Theoretic Model for a Stochastic Linear Quadratic Tracking Problem". Axioms 12, nr 1 (11.01.2023): 76. http://dx.doi.org/10.3390/axioms12010076.
Pełny tekst źródłaCurry, Charles, Kurusch Ebrahimi–Fard, Simon J. A. Malham i Anke Wiese. "Algebraic structures and stochastic differential equations driven by Lévy processes". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, nr 2221 (styczeń 2019): 20180567. http://dx.doi.org/10.1098/rspa.2018.0567.
Pełny tekst źródłaNair, Priya, i Anandaraman Rathinasamy. "Stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential algebraic equations". Results in Applied Mathematics 12 (listopad 2021): 100187. http://dx.doi.org/10.1016/j.rinam.2021.100187.
Pełny tekst źródłaRozprawy doktorskie na temat "Stochastic Differential Algebraic Equations"
Curry, Charles. "Algebraic structures in stochastic differential equations". Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2791.
Pełny tekst źródłaDabrowski, Yoann. "Free entropies, free Fisher information, free stochastic differential equations, with applications to Von Neumann algebras". Thesis, Paris Est, 2010. http://www.theses.fr/2010PEST1015.
Pełny tekst źródłaThis works extends our knowledge of free entropies, free Fisher information and free stochastic differential equations in three directions. First, we prove that if a $W^{*}$-probability space generated by more than 2 self-adjoints with finite non-microstates free Fisher information doesn't have property $Gamma$ of Murray and von Neumann (especially is not amenable). This is an analogue of a well-known result of Voiculescu for microstates free entropy. We also prove factoriality under finite non-microstates entropy. Second, we study a general free stochastic differential equation with unbounded coefficients (``stochastic PDE"), and prove stationarity of solutions in well-chosen cases. This leads to a computation of microstates free entropy dimension in case of Lipschitz conjugate variable. Finally, we introduce a non-commutative path space approach to solve general stationary free Stochastic differential equations. By defining tracial states on a non-commutative analogue of a path space, we construct Markov dilations for a class of conservative completely Markov semigroups on finite von Neumann algebras. This class includes all symmetric semigroups. For well chosen semigroups (for instance with generator any divergence form operator associated to a derivation valued in the coarse correspondence) those dilations give rise to stationary solutions of certain free SDEs. Among applications, we prove a non-commutative Talagrand inequality for non-microstate free entropy (relative to a subalgebra $B$ and a completely positive map $eta:Bto B$). We also use those new deformations in conjunction with Popa's deformation/rigidity techniques, to get absence of Cartan subalgebra results
Ding, Jie. "Structural and fluid analysis for large scale PEPA models, with applications to content adaptation systems". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/7975.
Pełny tekst źródłaTribastone, Mirco. "Scalable analysis of stochastic process algebra models". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4629.
Pełny tekst źródłaBringuier, Hugo. "Marches quantiques ouvertes". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30064/document.
Pełny tekst źródłaThis thesis is devoted to the study of stochastic models derived from open quantum systems. In particular, this work deals with open quantum walks that are the quantum analogues of classical random walks. The first part consists in giving a general presentation of open quantum walks. The mathematical tools necessary to study open quan- tum systems are presented, then the discrete and continuous time models of open quantum walks are exposed. These walks are respectively governed by quantum channels and Lindblad operators. The associated quantum trajectories are given by Markov chains and stochastic differential equations with jumps. The first part concludes with discussions over some of the research topics such as the Dirichlet problem for open quantum walks and the asymptotic theorems for quantum non demolition measurements. The second part collects the articles written within the framework of this thesis. These papers deal with the topics associated to the irreducibility, the recurrence-transience duality, the central limit theorem and the large deviations principle for continuous time open quantum walks
Trenn, Stephan. "Distributional differential algebraic equations". Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.
Pełny tekst źródłaBahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics". Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.
Pełny tekst źródłaDareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.
Pełny tekst źródłaAbourashchi, Niloufar. "Stability of stochastic differential equations". Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509828.
Pełny tekst źródłaZhang, Qi. "Stationary solutions of stochastic partial differential equations and infinite horizon backward doubly stochastic differential equations". Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34040.
Pełny tekst źródłaKsiążki na temat "Stochastic Differential Algebraic Equations"
Nicole, El Karoui, i Mazliak Laurent, red. Backward stochastic differential equations. Harlow: Longman, 1997.
Znajdź pełny tekst źródłaVârsan, Constantin. Applications of Lie algebras to hyperbolic and stochastic differential equations. Dordrecht: Kluwer Academic Publishers, 1999.
Znajdź pełny tekst źródłaVârsan, Constantin. Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1.
Pełny tekst źródłaVârsan, Constantin. Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations. Dordrecht: Springer Netherlands, 1999.
Znajdź pełny tekst źródłaStochastic differential equations. Hauppauge, N.Y: Nova Science Publishers, 2011.
Znajdź pełny tekst źródłaStochastic differential equations. Boston: Pitman Advanced Pub. Program, 1985.
Znajdź pełny tekst źródłaØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02847-6.
Pełny tekst źródłaØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03185-8.
Pełny tekst źródłaØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-14394-6.
Pełny tekst źródłaPanik, Michael J. Stochastic Differential Equations. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119377399.
Pełny tekst źródłaCzęści książek na temat "Stochastic Differential Algebraic Equations"
Winkler, R. "Stochastic Differential Algebraic Equations in Transient Noise Analysis". W Scientific Computing in Electrical Engineering, 151–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-32862-9_22.
Pełny tekst źródłaOcone, Daniel, i Etienne Pardoux. "A Lie algebraic criterion for non-existence of finite dimensionally computable filters". W Stochastic Partial Differential Equations and Applications II, 197–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0083947.
Pełny tekst źródłaVârsan, Constantin. "Finitely Generated over Orbits Lie Algebras and Algebraic Representation of the Gradient System". W Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations, 49–75. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1_4.
Pełny tekst źródłaJanowicz, Maciej, Joanna Kaleta, Filip Krzyżewski, Marian Rusek i Arkadiusz Orłowski. "Homotopy Analysis Method for Stochastic Differential Equations with Maxima". W Computer Algebra in Scientific Computing, 233–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24021-3_18.
Pełny tekst źródłaVârsan, Constantin. "Gradient Systems in a Lie Algebra". W Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations, 5–23. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1_2.
Pełny tekst źródłaVârsan, Constantin. "Introduction". W Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations, 1–4. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1_1.
Pełny tekst źródłaVârsan, Constantin. "Representation of a Gradient System". W Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations, 25–48. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1_3.
Pełny tekst źródłaVârsan, Constantin. "Applications". W Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations, 77–115. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1_5.
Pełny tekst źródłaVârsan, Constantin. "Stabilization and Related Problems". W Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations, 117–95. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4679-1_6.
Pełny tekst źródłaGrigoriu, Mircea. "Stochastic Algebraic Equations". W Springer Series in Reliability Engineering, 337–78. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2327-9_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Stochastic Differential Algebraic Equations"
Gerdin, Markus, i Johan Sjoberg. "Nonlinear Stochastic Differential-Algebraic Equations with Application to Particle Filtering". W Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377135.
Pełny tekst źródłaHUDSON, R. L. "ALGEBRAIC STOCHASTIC DIFFERENTIAL EQUATIONS AND A FUBINI THEOREM FOR SYMMETRISED DOUBLE QUANTUM STOCHASTIC PRODUCT INTEGRALS". W Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810267_0007.
Pełny tekst źródłaBereza, Robert, Oscar Eriksson, Mohamed R. H. Abdalmoaty, David Broman i Hakan Hjalmarsson. "Stochastic Approximation for Identification of Non-Linear Differential-Algebraic Equations with Process Disturbances". W 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9993085.
Pełny tekst źródłaWang, Keyou, i Mariesa L. Crow. "Numerical simulation of Stochastic Differential Algebraic Equations for power system transient stability with random loads". W 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039188.
Pełny tekst źródłaMALGRANGE, B. "DIFFERENTIAL ALGEBRAIC GROUPS". W Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0007.
Pełny tekst źródłaBostan, Alin, Frédéric Chyzak, Bruno Salvy, Grégoire Lecerf i Éric Schost. "Differential equations for algebraic functions". W the 2007 international symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1277548.1277553.
Pełny tekst źródłaŻołądek, Henryk. "Polynomial Riccati equations with algebraic solutions". W Differential Galois Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc58-0-17.
Pełny tekst źródłaAroca, J. M., J. Cano, R. Feng i X. S. Gao. "Algebraic general solutions of algebraic ordinary differential equations". W the 2005 international symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1073884.1073891.
Pełny tekst źródłaMA, YUJIE, i XIAO-SHAN GAO. "POLYNOMIAL SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS". W Proceedings of the Fifth Asian Symposium (ASCM 2001). WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799661_0010.
Pełny tekst źródłaTrenn, Stephan, i Benjamin Unger. "Delay regularity of differential-algebraic equations". W 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030146.
Pełny tekst źródłaRaporty organizacyjne na temat "Stochastic Differential Algebraic Equations"
Gear, C. W. Differential algebraic equations, indices, and integral algebraic equations. Office of Scientific and Technical Information (OSTI), kwiecień 1989. http://dx.doi.org/10.2172/6307619.
Pełny tekst źródłaKnorrenschild, M. Differential-algebraic equations as stiff ordinary differential equations. Office of Scientific and Technical Information (OSTI), maj 1989. http://dx.doi.org/10.2172/6980335.
Pełny tekst źródłaYan, Xiaopu. Singularly Perturbed Differential/Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, październik 1994. http://dx.doi.org/10.21236/ada288365.
Pełny tekst źródłaAshby, S. F., S. L. Lee, L. R. Petzold, P. E. Saylor i E. Seidel. Computing spacetime curvature via differential-algebraic equations. Office of Scientific and Technical Information (OSTI), styczeń 1996. http://dx.doi.org/10.2172/221033.
Pełny tekst źródłaRabier, Patrick J., i Werner C. Rheinboldt. On Impasse Points of Quasilinear Differential Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1992. http://dx.doi.org/10.21236/ada252643.
Pełny tekst źródłaRabier, Patrick J., i Werner C. Rheinboldt. A Geometric Treatment of Implicit Differential-Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, maj 1991. http://dx.doi.org/10.21236/ada236991.
Pełny tekst źródłaChristensen, S. K., i G. Kallianpur. Stochastic Differential Equations for Neuronal Behavior. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1985. http://dx.doi.org/10.21236/ada159099.
Pełny tekst źródłaOber, Curtis C., Roscoe Bartlett, Todd S. Coffey i Roger P. Pawlowski. Rythmos: Solution and Analysis Package for Differential-Algebraic and Ordinary-Differential Equations. Office of Scientific and Technical Information (OSTI), luty 2017. http://dx.doi.org/10.2172/1364461.
Pełny tekst źródłaDalang, Robert C., i N. Frangos. Stochastic Hyperbolic and Parabolic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1994. http://dx.doi.org/10.21236/ada290372.
Pełny tekst źródłaJiang, Bo, Roger Brockett, Weibo Gong i Don Towsley. Stochastic Differential Equations for Power Law Behaviors. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2012. http://dx.doi.org/10.21236/ada577839.
Pełny tekst źródła