Gotowa bibliografia na temat „STM”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „STM”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "STM"

1

Anders, M., M. Mück i C. Heiden. "SEM/STM combination for STM tip guidance". Ultramicroscopy 25, nr 2 (styczeń 1988): 123–28. http://dx.doi.org/10.1016/0304-3991(88)90219-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Makovicka, C., G. Gärtner, A. Hardt, W. Hermann i D. U. Wiechert. "Impregnated cathode surface investigations by SFM/STM and SEM/EDX". Applied Surface Science 111 (luty 1997): 70–75. http://dx.doi.org/10.1016/s0169-4332(96)00725-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

ICHINOKAWA, Takeo. "Combination of STM with SEM." Journal of the Japan Society for Precision Engineering 53, nr 12 (1987): 1835–40. http://dx.doi.org/10.2493/jjspe.53.1835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Marti, Othmar, Matthias Amrein i David P. Allison. "STM and SFM in Biology". Physics Today 47, nr 7 (lipiec 1994): 64. http://dx.doi.org/10.1063/1.2808574.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Allen, Terence D. "STM and SFM in biology". Trends in Cell Biology 4, nr 5 (maj 1994): 187. http://dx.doi.org/10.1016/0962-8924(94)90206-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cox, Guy. "STM and SFM in biology". Micron 25, nr 5 (styczeń 1994): 493. http://dx.doi.org/10.1016/0968-4328(94)90046-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ermakov, A. V., i E. L. Garfunkel. "A novel AFM/STM/SEM system". Review of Scientific Instruments 65, nr 9 (wrzesień 1994): 2853–54. http://dx.doi.org/10.1063/1.1144627.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Venables, John A., David J. Smith i John M. Cowley. "HREM, STEM, REM, SEM — And STM". Surface Science Letters 181, nr 1-2 (marzec 1987): A93. http://dx.doi.org/10.1016/0167-2584(87)90731-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Venables, John A., David J. Smith i John M. Cowley. "HREM, STEM, REM, SEM — and STM". Surface Science 181, nr 1-2 (marzec 1987): 235–49. http://dx.doi.org/10.1016/0039-6028(87)90164-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Golubok, Alexander O., i Vladimir A. Timofeev. "STM combined with SEM without SEM capability limitations". Ultramicroscopy 42-44 (lipiec 1992): 1558–63. http://dx.doi.org/10.1016/0304-3991(92)90483-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "STM"

1

ABREU, FERNANDA DE MELLO. "TIME-DOMAIN OPTICAL MULTIPLEXING IN STM-16, STM-64 AND STM-256 SYSTEMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2361@1.

Pełny tekst źródła
Streszczenie:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
ALCATEL TELECOMUNICAÇÕES
Este trabalho tem como foco o up-grade da taxa de bits em enlaces ópticos através da tecnologia OTDM. Os sistemas analisados contemplam os up-grades das taxas de 2,48 Gbps para 10 Gbps e também da taxa de 10 Gbps para 40 Gbps. Para tal, foram introduzidos módulos de transmissão e recepção, capazes de utilizar arquiteturas quase totalmente ópticas. É avaliado então, através de simulações, o comportamento da arquitetura proposta em infra-estruturas de enlaces já instalados no Brasil, destacando os pontos mais críticos. No que se refere ao up-grade de 10 Gbps para 40 Gbps, foi dado enfoque especial para as penalidades relativas à PMD (Polarization Mode Dispersion).
This work aims at up grading the bit rate of optical links through the OTDM technology. The analyzed up-grades change the bit rate of 2,48 Gbps up to 10 Gbps and also from the bit rate of 10 Gbps up to 40 Gbps. To reach these objectives, transmission and reception modules were introduced, using all optical networks topologies. The performance of the proposed architecture was simulated using a infrastructure of links already installed in Brazil. The most critical issues were pointed out. Concerning the up-grade from 10 Gbps to 40 Gbps, a special focus was given to the penalties due to PMD (Polarization Mode Dispersion).
Style APA, Harvard, Vancouver, ISO itp.
2

Celis, Retana Arlensiú Eréndira. "Gap en graphène sur des surfaces nanostructurées de SiC et des surfaces vicinales de métaux nobles". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS417/document.

Pełny tekst źródła
Streszczenie:
L'électronique basée sur le graphène fait face à un verrou technologique, qui est l'absence d'une bande interdite (gap) permettant une commutation entre les états logiques allumé et éteint. Les nano-rubans de graphène rendent possible l'obtention de ce gap mais il est difficile de produire de tels rubans avec une largeur précise à l'échelle atomique et des bords bien ordonnés. Le confinement électronique est une façon élégante d'ouvrir un gap et peut en principe être réglé en ajustant la largeur des nano-rubans. Cette thèse est consacrée à la compréhension de l'ouverture du gap par nano-structuration. Nous avons suivi deux approches: l'introduction d'un potentiel super-périodique sur le graphène par des substrats vicinaux de métaux nobles et le confinement électronique dans des nano-rubans sur des facettes artificielles du SiC. Des potentiels super-périodiques ont été introduits avec deux substrats nano-structurés: l'Ir(332) et un cristal courbé de Pt(111) multi-vicinale. Le graphène modifie les marches initiales des substrats et les transforme en une succession de terrasses (111) et de régions d'accumulation de marches, observés par STM. La nano-structuration du substrat induit alors un potentiel super-périodique dans le graphène entraînant l'ouverture de gaps sur la bande π du graphène observée par ARPES, ce qui est cohérent avec la périodicité structurale observé par STM et LEED. Les gaps peuvent être convenablement expliqués par un modèle de type hamiltonien de Dirac; ce dernier nous permet de retrouver la force du potentiel à la jonction entre les terrasses (111) et la région d'accumulation des marches. La force du potentiel dépend du substrat, de la périodicité associée à la surface et du type de bord des marches (soit type A ou B). Nous avons aussi changé le potentiel de surface en intercalant du Cu sur l'Ir(332), qui reste préférentiellement au niveau de l'accumulation des marches. La surface présente des régions dopées n alors que les régions non-intercalées restent dopées p, conduisant à une succession de rubans dopés n et p pour une même couche de graphène continue. La seconde approche pour contrôler le gap est par confinement électronique dans des nanorubans de graphène synthétisés sur du SiC. Ces rubans sont obtenus sur des facettes du SiC ordonnées périodiquement. Comme l'ouverture d'un gap d'origine inconnue avait été observée par ARPES, nous avons réalisé les premières études atomiquement résolues par STM. Nous démontrons la régularité et la chiralité des bords, nous localisons précisément les nanorubans de graphène sur les facettes et nous identifions des mini-facettes sur du SiC. Afin de comprendre le couplage entre le graphène et le substrat, nous avons étudié une coupe transversale par STEM/EELS, en complément des études par ARPES et STM/STS. Nous observons que la facette (1-107) où le graphène se trouve présente un sub-facettage sur les extrémités haute et basse. Le sub-facettage comprend des mini-terrasses (0001) et des mini-facettes (1-105). Le graphène s'étend tout au long du la région sub-facettée, et est couplé au substrat dans les mini-terrasses (0001), ce qui le rend semi-conducteur. En revanche, le graphène au-dessus des mini-facettes (1-105) est découplé du substrat mais présente un gap observé par EELS, et compatible avec les observations faites par ARPES. L'origine du gap est expliquée par le confinement électronique sur des nano-rubans de graphène de 1 - 2 nm de largeur localisés sur ces mini-facettes (1-105)
The major challenge for graphene-based electronic applications is the absence of the band-gap necessary to switch between on and off logic states. Graphene nanoribbons provide a route to open a band-gap, though it is challenging to produce atomically precise nanoribbon widths and well-ordered edges. A particularly elegant method to open a band-gap is by electronic confinement, which can in principle be tuned by adjusting the nanoribbon width. This thesis is dedicated to understanding the ways of opening band-gaps by nanostructuration. We have used two approaches: the introduction of a superperiodic potential in graphene on vicinal noble metal substrates and the electronic confinement in artificially patterned nanoribbons on SiC. Superperiodic potentials on graphene have been introduced by two nanostructured substrates, Ir(332) and a multivicinal curved Pt(111) substrate. The growth of graphene modifies the original steps of the pristine substrates and transforms them into an array of (111) terraces and step bunching areas, as observed by STM. This nanostructuration of the underlying substrate induces the superperiodic potential on graphene that opens mini-gaps on the π band as observed by ARPES and consistent with the structural periodicity observed in STM and LEED. The mini-gaps are satisfactorily explained by a Dirac-hamiltonian model, that allows to retrieve the potential strength at the junctions between the (111) terraces and the step bunching. The potential strength depends on the substrate, the surface periodicity and the type of step-edge (A or B type). The surface potential has also been modified by intercalating Cu on Ir(332), that remains preferentially on the step bunching areas, producing there n-doped ribbons, while the non-intercalated areas remain p-doped, giving rise to an array of n- and p- doped nanoribbons on a single continuous layer. In the second approach to control the gap, we have studied the gap opening by electronic confinement in graphene nanoribbons grown on SiC. These ribbons are grown on an array of stabilized sidewalls on SiC. As a band-gap opening with unclear atomic origin had been observed by ARPES, we carried-out a correlated study of the atomic and electronic structure to identify the band gap origin. We performed the first atomically resolved study by STM, demonstrating the smoothness and chirality of the edges, finding the precise location of the metallic graphene nanoribbon on the sidewalls and identifying an unexpected mini-faceting on the substrate. To understand the coupling of graphene to the substrate, we performed a cross-sectional study by STEM/EELS, complementary of our ARPES and STM/STS studies. We observe that the (1-107) SiC sidewall facet is sub-faceted both at its top and bottom edges. The subfacetting consists of a series of (0001) miniterraces and (1-105) minifacets. Graphene is continuous on the whole subfacetting region, but it is coupled to the substrate on top of the (0001) miniterraces, rendering it there semiconducting. On the contrary, graphene is decoupled on top of the (1-105) minifacets but exhibits a bandgap, observed by EELS and compatible with ARPES observations. Such bandgap is originated by electronic confinement in the 1 - 2 nm width graphene nanoribbons that are formed over the (1-105) minifacets
Style APA, Harvard, Vancouver, ISO itp.
3

Pavera, Michal. "Konstrukce nízkoteplotních ultravakuových rastrovacích sondových mikroskopů". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234579.

Pełny tekst źródła
Streszczenie:
This thesis deals with the development of scanning probe microscopes. Mechanical requirements for microscopes using measuring methods of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) under enviroments of an ultrahigh vacuum (UHV) and variable temperatures are specified. Mechanical designs of two microscopes are discussed and their control electronics described. A special chapter is devoted to description of linear piezo manipulators and mechanical design of these prototypes.
Style APA, Harvard, Vancouver, ISO itp.
4

Müller, Thomas. "Imaging of DNA and DNA-RAP1 assembly by STM, TEM and SFM /". [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Holl, Christian [Verfasser], Markus [Akademischer Betreuer] Morgenstern i Samir [Akademischer Betreuer] Lounis. "High frequency STM and spin polarized STM on magnetic vortices / Christian Holl ; Markus Morgenstern, Samir Lounis". Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1192217926/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wiehlmann, Lutz. "Sequenzspezifizierte Transposonmutagenese (STM) in Pseudomonas aeruginosa". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96511211X.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ruess, Frank Joachim Physics Faculty of Science UNSW. "Atomically controlled device fabrication using STM". Awarded by:University of New South Wales. Physics, 2006. http://handle.unsw.edu.au/1959.4/24855.

Pełny tekst źródła
Streszczenie:
We present the development of a novel, UHV-compatible device fabrication strategy for the realisation of nano- and atomic-scale devices in silicon by harnessing the atomic-resolution capability of a scanning tunnelling microscope (STM). We develop etched registration markers in the silicon substrate in combination with a custom-designed STM/ molecular beam epitaxy system (MBE) to solve one of the key problems in STM device fabrication ??? connecting devices, fabricated in UHV, to the outside world. Using hydrogen-based STM lithography in combination with phosphine, as a dopant source, and silicon MBE, we then go on to fabricate several planar Si:P devices on one chip, including control devices that demonstrate the efficiency of each stage of the fabrication process. We demonstrate that we can perform four terminal magnetoconductance measurements at cryogenic temperatures after ex-situ alignment of metal contacts to the buried device. Using this process, we demonstrate the lateral confinement of P dopants in a delta-doped plane to a line of width 90nm; and observe the cross-over from 2D to 1D magnetotransport. These measurements enable us to extract the wire width which is in excellent agreement with STM images of the patterned wire. We then create STM-patterned Si:P wires with widths from 90nm to 8nm that show ohmic conduction and low resistivities of 1 to 20 micro Ohm-cm respectively ??? some of the highest conductivity wires reported in silicon. We study the dominant scattering mechanisms in the wires and find that temperature-dependent magnetoconductance can be described by a combination of both 1D weak localisation and 1D electron-electron interaction theories with a potential crossover to strong localisation at lower temperatures. We present results from STM-patterned tunnel junctions with gap sizes of 50nm and 17nm exhibiting clean, non-linear characteristics. We also present preliminary conductance results from a 70nm long and 90nm wide dot between source-drain leads which show evidence of Coulomb blockade behaviour. The thesis demonstrates the viability of using STM lithography to make devices in silicon down to atomic-scale dimensions. In particular, we show the enormous potential of this technology to directly correlate images of the doped regions with ex-situ electrical device characteristics.
Style APA, Harvard, Vancouver, ISO itp.
8

Deshpande, Aparna. "Atomistic interactions in STM atom manipulation". Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou169849272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dixon, Richard. "STM studies of semiconducting metal oxides". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Revenikiotis, Sackis (Athanasios). "Optimization of STM-tip preparation methods". Thesis, KTH, Materialfysik, MF (Stängd 20120101), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-30873.

Pełny tekst źródła
Streszczenie:
The Scanning Tunneling Microscope (STM) was invented by Gerd Binnig and Heinrich Rohrer and gave them the Nobel Prize in Physics 1986. STM can give us atomic resolution of a surface by applying a voltage between a very sharp tip (STM-tip) and the surface of a material that we want to examine. The STM-tip is moving over the surface and a computer is collecting the tunnel current in every single point to create a digital image. This diploma work is focused on the preparation of the STM-tip. The preparation method that is used is electrochemical etching of a tungsten wire. The sharper the STM-tip is the better resolution in the STM images we can get. With the purpose to get as sharp tip as possible and with a well-defined geometry, we prepared several tips by systematically varying the etching parameters such as voltage, current, concentration and wire length. A new method has been tested to minimize the oxidation on the surface and finally the tips were characterized with scanning electron microscope (SEM).
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "STM"

1

Othmar, Marti, i Amrein Matthias, red. STM and SFM in biology. San Diego: Academic Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Purwadi, Agung. Studi pembiayaan STM negeri. Jakarta: Pusat Penelitian Kebijakan, Badan Penelitian dan Pengembangan, Departemen Pendidikan Nasional, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Katsirikou, Anthi, red. Open Access to STM Information. Berlin, Boston: DE GRUYTER SAUR, 2011. http://dx.doi.org/10.1515/9783110263749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yamagata, Yoriyuki. Interpretation of STM by CSP. Hyōgo-ken Amagasaki-shi: Sangyō Gijutsu Sōgō Kenkyūjo (Kumikomi Shisutemu Gijutsu Renkei Kenkyūtai), 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

E, Church Victor, i United States. National Aeronautics and Space Administration., red. SSE Software Test Management STM capability: Using STM in the Ground Systems Development Environment (GSDE). [Houston, Tex.?]: Research Institute for Computing and Information Systems, University of Houston-Clear Lake, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Davidson, Fiona. Some effects of added stimuli on pigeon STM. Birmingham: University of Birmingham, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Delmonte, Clive. Advances in AFM & STM applied to thenucleic acids. Northampton: Clive Delmonte Publications, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

STM Study Group on Marketing. Meeting. STM seminar on Spain as a transfer channel of STM information between Europe and Ibero-America: [proceedings of the] STM Study Group on Marketing, thirty-eighth meeting, Barcelona, 25 September 1984. Amsterdam: International Group of Scientific Technical and Medical Publishers, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Subramaniam, Venkat. Programming concurrency on the JVM: Mastering synchronization, STM, and actors. Dallas, Tex. [u.a.]: Pragmatic Bookshelf, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Miller, Jimmie Andrew. From STM to nanomemory: A transfer of technology feasibility study. [s.l.]: typescript, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "STM"

1

Leung, Alexander K. C., Cham Pion Kao, Andrew L. Wong, Alexander K. C. Leung, Thomas Kolter, Ute Schepers, Konrad Sandhoff i in. "STM". W Encyclopedia of Molecular Mechanisms of Disease, 1996. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Edkins, Stephen. "Spectroscopic-Imaging STM (SI-STM)". W Visualising the Charge and Cooper-Pair Density Waves in Cuprates, 23–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65975-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Auffan, Mélanie, Catherine Santaella, Alain Thiéry, Christine Paillès, Jérôme Rose, Wafa Achouak, Antoine Thill i in. "EC-STM". W Encyclopedia of Nanotechnology, 645. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Castroviejo, Ricardo. "Stromeyerite (stm)". W A Practical Guide to Ore Microscopy—Volume 1, 733–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12654-3_121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bast, Thomas, i Günter Krämer. "Sultiam (STM)". W Medikamenten-Pocket Epilepsie, 211–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-67716-2_35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Siegenthaler, H. "STM in Electrochemistry". W Scanning Tunneling Microscopy II, 7–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79366-0_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lu, Li, i Michael L. Scott. "Generic Multiversion STM". W Lecture Notes in Computer Science, 134–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41527-2_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Michel, B. "STM in Biology". W NATO ASI Series, 549–72. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3686-8_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Deyhle, Hans, Georg Schulz, Bert Müller, Roger H. French, Roger H. French, Meghan E. Samberg, Nancy A. Monteiro-Riviere i in. "In-situ STM". W Encyclopedia of Nanotechnology, 1127. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kuk, Y. "STM on Metals". W Springer Series in Surface Sciences, 17–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97343-7_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "STM"

1

Dolev, Shlomi, Danny Hendler i Adi Suissa. "CAR-STM". W the twenty-seventh ACM symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1400751.1400769.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Saha, Bratin, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh i Benjamin Hertzberg. "McRT-STM". W the eleventh ACM SIGPLAN symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1122971.1123001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kim, Jihyun, i Youjip Won. "OpF-STM". W the 2018 International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3193063.3193076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gelashvili, Rati, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia Malkhi, Yu Xia i Runtian Zhou. "Block-STM". W PPoPP '23: The 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3572848.3577524.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Eng, L. M., H. Fuchs, K. D. Jandt i J. Petermann. "Imaging Poly (1-Butene) Films by SFM/STM". W Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lin, Shengle, Wangdong Yang, Haotian Wang, Qinyun Tsai i Kenli Li. "STM-multifrontal QR". W SC '21: The International Conference for High Performance Computing, Networking, Storage and Analysis. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3458817.3476199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hallam, Toby, Neil J. Curson, Lars Oberbeck i Michelle Y. Simmons. "STM characterization of phosphine adsorption on STM-patterned H:Si(001)surfaces". W Smart Materials, Nano-, and Micro-Smart Systems, redaktorzy Jung-Chih Chiao, David N. Jamieson, Lorenzo Faraone i Andrew S. Dzurak. SPIE, 2005. http://dx.doi.org/10.1117/12.583316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Dragojević, Aleksandar, i Tim Harris. "STM in the small". W the 7th ACM european conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2168836.2168838.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Talmadge, S., T. K. Samec i N. H. Lazar. "ICRF heating in STM". W AIP Conference Proceedings Volume 129. AIP, 1985. http://dx.doi.org/10.1063/1.35273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

West, Paul E., i Sheila Henely. "Applications of STM Technologies". W 1989 Microlithography Conferences, redaktor Kevin M. Monahan. SPIE, 1989. http://dx.doi.org/10.1117/12.953113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "STM"

1

SARCOS RESEARCH CORP SALT LAKE CITY UT. STM-Based Hydrophone Sensors. Fort Belvoir, VA: Defense Technical Information Center, maj 1991. http://dx.doi.org/10.21236/ada236361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

SARCOS RESEARCH CORP SALT LAKE CITY UT. STM-Based Hydrophone Sensors. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1991. http://dx.doi.org/10.21236/ada239821.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sullivan, T. E., i P. H. Cutler. Laser Interactions in STM and STM-Like Devices: Applications to Infrared and Optical Detection. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1995. http://dx.doi.org/10.21236/ada299797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Davis, J. C. STM Studies of Semiconductor Qubit Candidates. Fort Belvoir, VA: Defense Technical Information Center, listopad 2005. http://dx.doi.org/10.21236/ada455573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hamers, R. J. Methods of Tunneling Spectroscopy With the STM. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1993. http://dx.doi.org/10.21236/ada266507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Beaux, Miles Frank, Miguel A. Santiago Cordoba, Stephen Anthony Joyce i Igor Olegovich Usov. AFM/STM Plutonium capability, research summary and future plans. Office of Scientific and Technical Information (OSTI), czerwiec 2016. http://dx.doi.org/10.2172/1259630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Duran, R. S., W. Sigmund, T. Bailey i M. Hara. Langmuir Blodgett and STM Investigations of Conducting Polymer Thin Films. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1993. http://dx.doi.org/10.21236/ada274512.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sarid, Dror. Novel Nanostructure Fabrication and Their Characterization by STM and AFM. Fort Belvoir, VA: Defense Technical Information Center, listopad 2000. http://dx.doi.org/10.21236/ada391137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sibener, Steven J. AASERT-96 Augmentation Award for STM Studies of Corrosion Reactions. Fort Belvoir, VA: Defense Technical Information Center, październik 2000. http://dx.doi.org/10.21236/ada383435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Scott, Joachim H., i Henry S. White. Electric Field Induced Reconstructions in STM Experiments on Au(111) Surfaces. Fort Belvoir, VA: Defense Technical Information Center, luty 1992. http://dx.doi.org/10.21236/ada246849.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii