Artykuły w czasopismach na temat „Stiffened Composite Wing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Stiffened Composite Wing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sahadevan, Vijay, Yoann Bonnefon i Tim Edwards. "A Meta-Heuristic Based Weight Optimisation for Composite Wing Structural Analysis". Applied Mechanics and Materials 5-6 (październik 2006): 305–14. http://dx.doi.org/10.4028/www.scientific.net/amm.5-6.305.
Pełny tekst źródłaButler, R. "Optimum design of composite stiffened wing panels — a parametric study". Aeronautical Journal 99, nr 985 (maj 1995): 169–77. http://dx.doi.org/10.1017/s0001924000028335.
Pełny tekst źródłaLiu, Tie Jun, Yong Zhang, Gang Li i Feng Hui Wang. "Dynamic Response Analysis for the Solar-Powered Aircraft Composite Wing Panel with Viscoelastic Damping Layer". Applied Mechanics and Materials 105-107 (wrzesień 2011): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.491.
Pełny tekst źródłaHwu, Chyanbin, i Z. S. Tsai. "Aeroelastic Divergence of Stiffened Composite Multicell Wing Structures". Journal of Aircraft 39, nr 2 (marzec 2002): 242–51. http://dx.doi.org/10.2514/2.2945.
Pełny tekst źródłaBhowmik, Krishnendu, Shamim Akhtar, Raj Kumar Kalshyan, Niloy Khutia i Amit Roy Choudhury. "CNT Reinforced Laminated Composite under In-Plane Tensile Loading: A Finite Element Study". Materials Science Forum 978 (luty 2020): 323–29. http://dx.doi.org/10.4028/www.scientific.net/msf.978.323.
Pełny tekst źródłaKATO, Yoko, Ning HU, Masaki KAMEYAMA i Hisao FUKUNAGA. "Optimum Design of Composite Wing Considering Stiffened Panel Buckling". Proceedings of Conference of Tohoku Branch 2002.37 (2002): 208–9. http://dx.doi.org/10.1299/jsmeth.2002.37.208.
Pełny tekst źródłaKATO, Yoko, Masaki KAMEYAMA, Ning HU i Hisao FUKUNAGA. "Optimum Design of Composite Wing Considering Stiffened Panel Buckling". Transactions of the Japan Society of Mechanical Engineers Series A 70, nr 691 (2004): 479–86. http://dx.doi.org/10.1299/kikaia.70.479.
Pełny tekst źródłaYang, Xue-Yong, i Jun Xiao. "Research Progress on Analytical and Numerical Prediction of Curing Deformation in Thermoset for Large Composite Parts". Science of Advanced Materials 14, nr 4 (1.04.2022): 669–81. http://dx.doi.org/10.1166/sam.2022.4247.
Pełny tekst źródłaRomano, Fulvio, Monica Ciminello, Assunta Sorrentino i Umberto Mercurio. "Application of structural health monitoring techniques to composite wing panels". Journal of Composite Materials 53, nr 25 (10.04.2019): 3515–33. http://dx.doi.org/10.1177/0021998319843333.
Pełny tekst źródłaDe Angelis, Giovanni, Michele Meo, D. P. Almond, S. G. Pickering i U. Polimeno. "Impact Damage Detection in a Stiffened Composite Wing Panel Using Digital Shearography and Thermosonics". Key Engineering Materials 471-472 (luty 2011): 904–9. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.904.
Pełny tekst źródłaKumar, K. C. Nithin, Gopal Gupta, Saurabh Lakhera i Amir Shaikh. "Structural Optimization of Composite Stiffened Panel of a Transport Aircraft Wing using CAE Tools". Materials Today: Proceedings 2, nr 4-5 (2015): 2588–94. http://dx.doi.org/10.1016/j.matpr.2015.07.213.
Pełny tekst źródłaWiggenraad, J. F. M., X. Zhang i G. A. O. Davies. "Impact damage prediction and failure analysis of heavily loaded, blade-stiffened composite wing panels". Composite Structures 45, nr 2 (czerwiec 1999): 81–103. http://dx.doi.org/10.1016/s0263-8223(98)00132-9.
Pełny tekst źródłaK.C., Nithin Kumar, Subhash Chavadaki, Amir Shaikh, Durgeshwar Pratap Singh i Shwetank Avikal. "Weight optimization of a hat stiffened panel of a typical transport aircraft composite wing". Materials Today: Proceedings 26 (2020): 471–74. http://dx.doi.org/10.1016/j.matpr.2019.12.087.
Pełny tekst źródłaSkrna-Jakl, I. C., M. A. Stiftinger i F. G. Rammerstorfer. "Numerical investigations of an imperfect stringer-stiffened composite wing torsion box—an analysis concept". Composites Part B: Engineering 27, nr 1 (styczeń 1996): 59–69. http://dx.doi.org/10.1016/1359-8368(95)00007-0.
Pełny tekst źródłados Santos, Rogério Rodrigues, Tulio Gomes de Paula Machado i Saullo Giovani Pereira Castro. "Support Vector Machine Applied to the Optimal Design of Composite Wing Panels". Aerospace 8, nr 11 (2.11.2021): 328. http://dx.doi.org/10.3390/aerospace8110328.
Pełny tekst źródłaPigazzini, Marco S., Yuri Bazilevs, Andrew Ellison i Hyonny Kim. "Isogeometric analysis for simulation of progressive damage in composite laminates". Journal of Composite Materials 52, nr 25 (22.04.2018): 3471–89. http://dx.doi.org/10.1177/0021998318770723.
Pełny tekst źródłaRomano, Fulvio, Marco Barile, Gianpaolo Cacciapuoti, Jean-Luc Godard, Paolo Vollaro i Philippe Barabinot. "Advanced OoA and Automated Technologies for the Manufacturing of a Composite Outer Wing Box". MATEC Web of Conferences 233 (2018): 00005. http://dx.doi.org/10.1051/matecconf/201823300005.
Pełny tekst źródłaJayasree, Nithin, Sadik Omairey i Mihalis Kazilas. "Novel multi-zone self-heated composites tool for out-of-autoclave aerospace components manufacturing". Science and Engineering of Composite Materials 27, nr 1 (7.10.2020): 325–34. http://dx.doi.org/10.1515/secm-2020-0033.
Pełny tekst źródłaRiccio, Aniello, Andrea Sellitto, Salvatore Saputo, Giovanni Conte i Mauro Zarrelli. "Thermo-Mechanical Behaviour of a Composite Stiffened Panel Undergoing the Tail-Pipe Fire Event". Key Engineering Materials 774 (sierpień 2018): 101–6. http://dx.doi.org/10.4028/www.scientific.net/kem.774.101.
Pełny tekst źródłaEsposito, Marco, Rinto Roy, Cecilia Surace i Marco Gherlone. "Hybrid Shell-Beam Inverse Finite Element Method for the Shape Sensing of Stiffened Thin-Walled Structures: Formulation and Experimental Validation on a Composite Wing-Shaped Panel". Sensors 23, nr 13 (27.06.2023): 5962. http://dx.doi.org/10.3390/s23135962.
Pełny tekst źródłaDaraji, Ali H., Jack M. Hale i Jianqiao Ye. "Optimisation of energy harvesting for stiffened composite shells with application to the aircraft wing at structural flight frequency". Thin-Walled Structures 161 (kwiecień 2021): 107392. http://dx.doi.org/10.1016/j.tws.2020.107392.
Pełny tekst źródłaHiremath, Pavan, Sathyamangalam Ramanarayanan Viswamurthy, Manjunath Shettar, Nithesh Naik i Suhas Kowshik. "Damage Tolerance of a Stiffened Composite Panel with an Access Cutout under Fatigue Loading and Validation Using FEM Analysis and Digital Image Correlation". Fibers 10, nr 12 (8.12.2022): 105. http://dx.doi.org/10.3390/fib10120105.
Pełny tekst źródłaCestino, Enrico, Giacomo Frulla, Paolo Piana i Renzo Duella. "Numerical/Experimental Validation of Thin-Walled Composite Box Beam Optimal Design". Aerospace 7, nr 8 (31.07.2020): 111. http://dx.doi.org/10.3390/aerospace7080111.
Pełny tekst źródłaWang, Zhe, Xiangming Chen, Peng Zou, Xinxiang Li, Qingxianglong Liang i Junchao Yang. "Parametric Analysis on Three-Points Bending Test of Typical Skin-Stringer Structure". Journal of Physics: Conference Series 2085, nr 1 (1.11.2021): 012043. http://dx.doi.org/10.1088/1742-6596/2085/1/012043.
Pełny tekst źródłaFenner, Patrick, Andrew Watson i Carol Featherston. "Modelling Infinite Length Panels Using the Finite Element Method". International Journal of Structural Stability and Dynamics 16, nr 07 (3.08.2016): 1750038. http://dx.doi.org/10.1142/s0219455417500389.
Pełny tekst źródłaCapriotti, Margherita, i Francesco Lanza di Scalea. "Robust non-destructive inspection of composite aerospace structures by extraction of ultrasonic guided-wave transfer function in single-input dual-output scanning systems". Journal of Intelligent Material Systems and Structures 31, nr 5 (9.01.2020): 651–64. http://dx.doi.org/10.1177/1045389x19898266.
Pełny tekst źródłaYu, Fei, Fei Yuan, Zhe Wang i Xiangming Chen. "Experimental and Numerical Investigation on the Failure Behaviour of Multi-Stiffener Composite Panel Under Compression". Journal of Physics: Conference Series 2557, nr 1 (1.07.2023): 012098. http://dx.doi.org/10.1088/1742-6596/2557/1/012098.
Pełny tekst źródłaLINDE, PETER. "VIRTUAL TESTING OF STIFFENED COMPOSITE PANELS AT AIRBUS". International Journal of Structural Stability and Dynamics 10, nr 04 (październik 2010): 589–600. http://dx.doi.org/10.1142/s0219455410003634.
Pełny tekst źródłaPapadopoulos, F., D. Aiyappa, R. Shapriya, E. Sotirchos, H. Ghasemnejad i R. Benhadj-Djilali. "Advanced Natural Stitched Composite Materials in Skin-Stiffener of Wind Turbine Blade Structures". Key Engineering Materials 525-526 (listopad 2012): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.525-526.45.
Pełny tekst źródłaDoggui, Mohamed Montassar, Wael Touihri, Mondher Yahiaoui i Moez Chafra. "Numerical investigation on aircraft wing stiffener composite material integration". Aerospace Systems 2, nr 2 (4.06.2019): 137–45. http://dx.doi.org/10.1007/s42401-019-00027-9.
Pełny tekst źródłaPlenča, Stipe, i Albert Zamarin. "Structural Design of a Composite Trimaran". Journal of Maritime & Transportation Science 2, Special edition 2 (kwiecień 2018): 71–88. http://dx.doi.org/10.18048/2016-00.63.
Pełny tekst źródłaButler, R., M. Lillico, J. R. Banerjee, M. H. Patel i G. T. S. Done. "Sequential use of conceptual MDO and panel sizing methods for aircraft wing design". Aeronautical Journal 103, nr 1026 (sierpień 1999): 389–97. http://dx.doi.org/10.1017/s0001924000064617.
Pełny tekst źródłaDervilis, Nikolaos, R. Barthorpe, Wieslaw Jerzy Staszewski i Keith Worden. "Structural Health Monitoring of Composite Material Typical of Wind Turbine Blades by Novelty Detection on Vibration Response". Key Engineering Materials 518 (lipiec 2012): 319–27. http://dx.doi.org/10.4028/www.scientific.net/kem.518.319.
Pełny tekst źródłaKennedy, D., M. Fischer i C. A. Featherston. "Recent developments in exact strip analysis and optimum design of aerospace structures". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, nr 4 (1.04.2007): 399–413. http://dx.doi.org/10.1243/0954406jmes432.
Pełny tekst źródłaShahriari, Behrooz, Ali Nazari i Mostafa Sahraei. "Buckling Analysis of A Composite Stiffend Panel Structure In The Aircraft’s Wing". Mechanic of Advanced and Smart Materials 2, nr 3 (22.11.2022): 328–46. http://dx.doi.org/10.52547/masm.2.3.328.
Pełny tekst źródłaNavadeh, Navid, Ivan Goroshko, Yaroslav Zhuk, Farnoosh Etminan Moghadam i Arash Soleiman Fallah. "Finite Element Analysis of Wind Turbine Blade Vibrations". Vibration 4, nr 2 (5.04.2021): 310–22. http://dx.doi.org/10.3390/vibration4020020.
Pełny tekst źródłaTripathy, A. K., H. J. Patel i S. S. Pang. "Bending Analysis of Laminated Composite Box Beams". Journal of Engineering Materials and Technology 116, nr 1 (1.01.1994): 121–29. http://dx.doi.org/10.1115/1.2904247.
Pełny tekst źródłaZucco, G., V. Oliveri, M. Rouhi, R. Telford, G. Clancy, C. McHale, R. O’Higgins, T. M. Young, P. M. Weaver i D. Peeters. "Static test of a variable stiffness thermoplastic composite wingbox under shear, bending and torsion". Aeronautical Journal 124, nr 1275 (22.01.2020): 635–66. http://dx.doi.org/10.1017/aer.2019.161.
Pełny tekst źródłaSon, C. Y., H. I. Byun, K. H. Kim, J. K. Choi i J. Y. Shin. "An Analysis and Experimental Study of the Rotor Blade with Composite Material Fiber Reinforced Plastics". Key Engineering Materials 306-308 (marzec 2006): 851–56. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.851.
Pełny tekst źródłaQiu, Zixue, Lei Qiu, Jiang Yuan i Guan Lu. "On research of a phase synthesis time reversal focusing method for damage imaging of complex composite structures". Journal of Intelligent Material Systems and Structures 24, nr 2 (27.09.2012): 209–25. http://dx.doi.org/10.1177/1045389x12461078.
Pełny tekst źródłaLee, Sang-Lae. "Active vibration suppression of wind turbine blades integrated with piezoelectric sensors". Science and Engineering of Composite Materials 28, nr 1 (1.01.2021): 402–14. http://dx.doi.org/10.1515/secm-2021-0039.
Pełny tekst źródłaPark, Sunghyun, In-Gul Kim, Seokje Lee i Oo-Chul Jun. "Optimal Design of the Composite Hat-shaped Stiffeners for Simplified Wing Box with Embedded Array Antenna". Journal of The Korean Society for Composite Materials 25, nr 6 (31.12.2012): 224–29. http://dx.doi.org/10.7234/kscm.2012.25.6.224.
Pełny tekst źródłaQiu, Lei, Shen Fang Yuan i Tian Xiang Huang. "A Time Reversal Imaging Method without Relying on Transfer Function for Impact and Damage Monitoring of Composite Structures". Applied Mechanics and Materials 330 (czerwiec 2013): 542–48. http://dx.doi.org/10.4028/www.scientific.net/amm.330.542.
Pełny tekst źródłaMandell, John F., Douglas S. Cairns, Daniel D. Samborsky, Robert B. Morehead i Darrin J. Haugen. "Prediction of Delamination in Wind Turbine Blade Structural Details". Journal of Solar Energy Engineering 125, nr 4 (1.11.2003): 522–30. http://dx.doi.org/10.1115/1.1624613.
Pełny tekst źródłaLiu, Dianzi, Chuanwei Zhang, Z. Wan i Z. Du. "Topology optimization of a novel fuselage structure in the conceptual design phase". Aircraft Engineering and Aerospace Technology 90, nr 9 (14.11.2018): 1385–93. http://dx.doi.org/10.1108/aeat-04-2017-0100.
Pełny tekst źródłaStanford, Bret K., i Christine V. Jutte. "Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings". Computers & Structures 183 (kwiecień 2017): 48–60. http://dx.doi.org/10.1016/j.compstruc.2017.01.010.
Pełny tekst źródłaBarkanov, E., E. Eglītis, F. Almeida, M. C. Bowering i G. Watson. "Optimal design of composite upper covers of lateral wings with the effect of rib attachment to stiffener webs". Mechanics of Composite Materials 49, nr 3 (lipiec 2013): 285–96. http://dx.doi.org/10.1007/s11029-013-9345-3.
Pełny tekst źródłaSilva, Fernando José, Bernardo Félix Santiago Lana, Francisco Carlos Rodrigues i Luís Eustáquio Moreira. "Buckling of Bamboo Masts with Interposed Spacers". Key Engineering Materials 634 (grudzień 2014): 389–99. http://dx.doi.org/10.4028/www.scientific.net/kem.634.389.
Pełny tekst źródłaPetrolo, Marco, i Erasmo Carrera. "High-Fidelity and Computationally Efficient Component-Wise Structural Models: An Overview of Applications and Perspectives". Applied Mechanics and Materials 828 (marzec 2016): 175–96. http://dx.doi.org/10.4028/www.scientific.net/amm.828.175.
Pełny tekst źródłaQian, Xiuyang, Yushan Zhou, Menghui Wang, Liya Cai i Feng Pei. "Structural design of composite stiffened panel for a flat wing micro-aircraft". SN Applied Sciences 2, nr 4 (20.03.2020). http://dx.doi.org/10.1007/s42452-020-2559-9.
Pełny tekst źródła