Gotowa bibliografia na temat „Stiffened Composite Wing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Stiffened Composite Wing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Stiffened Composite Wing"
Sahadevan, Vijay, Yoann Bonnefon i Tim Edwards. "A Meta-Heuristic Based Weight Optimisation for Composite Wing Structural Analysis". Applied Mechanics and Materials 5-6 (październik 2006): 305–14. http://dx.doi.org/10.4028/www.scientific.net/amm.5-6.305.
Pełny tekst źródłaButler, R. "Optimum design of composite stiffened wing panels — a parametric study". Aeronautical Journal 99, nr 985 (maj 1995): 169–77. http://dx.doi.org/10.1017/s0001924000028335.
Pełny tekst źródłaLiu, Tie Jun, Yong Zhang, Gang Li i Feng Hui Wang. "Dynamic Response Analysis for the Solar-Powered Aircraft Composite Wing Panel with Viscoelastic Damping Layer". Applied Mechanics and Materials 105-107 (wrzesień 2011): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.491.
Pełny tekst źródłaHwu, Chyanbin, i Z. S. Tsai. "Aeroelastic Divergence of Stiffened Composite Multicell Wing Structures". Journal of Aircraft 39, nr 2 (marzec 2002): 242–51. http://dx.doi.org/10.2514/2.2945.
Pełny tekst źródłaBhowmik, Krishnendu, Shamim Akhtar, Raj Kumar Kalshyan, Niloy Khutia i Amit Roy Choudhury. "CNT Reinforced Laminated Composite under In-Plane Tensile Loading: A Finite Element Study". Materials Science Forum 978 (luty 2020): 323–29. http://dx.doi.org/10.4028/www.scientific.net/msf.978.323.
Pełny tekst źródłaKATO, Yoko, Ning HU, Masaki KAMEYAMA i Hisao FUKUNAGA. "Optimum Design of Composite Wing Considering Stiffened Panel Buckling". Proceedings of Conference of Tohoku Branch 2002.37 (2002): 208–9. http://dx.doi.org/10.1299/jsmeth.2002.37.208.
Pełny tekst źródłaKATO, Yoko, Masaki KAMEYAMA, Ning HU i Hisao FUKUNAGA. "Optimum Design of Composite Wing Considering Stiffened Panel Buckling". Transactions of the Japan Society of Mechanical Engineers Series A 70, nr 691 (2004): 479–86. http://dx.doi.org/10.1299/kikaia.70.479.
Pełny tekst źródłaYang, Xue-Yong, i Jun Xiao. "Research Progress on Analytical and Numerical Prediction of Curing Deformation in Thermoset for Large Composite Parts". Science of Advanced Materials 14, nr 4 (1.04.2022): 669–81. http://dx.doi.org/10.1166/sam.2022.4247.
Pełny tekst źródłaRomano, Fulvio, Monica Ciminello, Assunta Sorrentino i Umberto Mercurio. "Application of structural health monitoring techniques to composite wing panels". Journal of Composite Materials 53, nr 25 (10.04.2019): 3515–33. http://dx.doi.org/10.1177/0021998319843333.
Pełny tekst źródłaDe Angelis, Giovanni, Michele Meo, D. P. Almond, S. G. Pickering i U. Polimeno. "Impact Damage Detection in a Stiffened Composite Wing Panel Using Digital Shearography and Thermosonics". Key Engineering Materials 471-472 (luty 2011): 904–9. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.904.
Pełny tekst źródłaRozprawy doktorskie na temat "Stiffened Composite Wing"
Liu, Yifei. "Optimum design of a composite outer wing subject to stiffness and strength constraints". Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/6833.
Pełny tekst źródłaZhao, Wei. "Optimal Design and Analysis of Bio-inspired, Curvilinearly Stiffened Composite Flexible Wings". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/79143.
Pełny tekst źródłaPh. D.
Rammohan, B. "Design and Analysis of Multifunctional Composites for Unmanned Aerial Vehicles". Thesis, 2017. https://etd.iisc.ac.in/handle/2005/4312.
Pełny tekst źródłaΣταματέλος, Δημήτριος. "Μεθοδολογία ανάλυσης και προκαταρκτικού σχεδιασμού μη-συμβατικών αεροναυπηγικών δομών". Thesis, 2010. http://nemertes.lis.upatras.gr/jspui/handle/10889/4301.
Pełny tekst źródłaThe design and development of a modern aerospace structure consists of many design stages. The most important stages are the conceptual and the preliminary where the initial sizing of the structure is obtained. It is known that the conventional design of the aircraft’s main structural members has reached a high optimization level, where margins for further improvement are small. The current demands of the lightweight structures such as weight reduction, payload increase etc. have led the aerospace industries develop unconventional structures and partially substitute the metallic materials of the primary structures with composites. The current trend of designing and evolving unconventional aerospace structures, without performing extended experimental tests, leads to the development of behavior models. The simulation of the experimental tests (through the behavior models) is achieved using high performance computers and numerical methods (Finite Element Method, Boundary Element Method etc). To apply simulation methods during the conceptual and preliminary stage is not an easy task. Most of the difficulties are the numerous geometrical, material parameters and the structural details that alter during the iterative process of the design. So, the exclusive usage of numerical analysis methods becomes very time consuming, if it is not accompanied by analytical or semi analytical methods of the sub-problems of the design. Part of the preliminary design of an unconventional wing structure is to prevent upper skin from failure. The stiffened panels that comprise the upper skin of the wing suffer from buckling due to the applied compressive loads. The sizing of the composite stiffened panels usually requires numerous of iterative calculations for various geometries, loading and boundary conditions etc. The examination of each case separately, with the use of numerical methods, results to time consuming analyses of the entire structure. Therefore, the development of appropriate analytical or semi analytical methods for estimating stiffened panels’ critical buckling load is of great importance. For this purpose, in the present thesis, analytical and semi analytical methodologies are developed for estimating the critical buckling load of stiffened panels. The developed methodologies are incorporated as design criteria in the sizing routine of the entire structure. The sizing routine comprises additional sizing criteria for checking the strength of wing’s structural members at each phase of the iterative process. Applying the developed sizing routine in various wing configurations made of composite materials, multispar wing designs are studied. Specifically, analytical and semi analytical methods for global and local buckling problems of stiffened panels are developed. The methodology of global buckling problems is based on the mathematical conversion of a stiffened panel to an equivalent homogeneous panel. The developed method of homogenization of stiffened panels appears to have significant advantages over the already existed homogenization methods. Additionally, the energy method Rayleigh-Ritz is applied for solving global buckling problems of stiffened panels with partial anisotropy considering discrete stiffeners. Regarding local buckling problems of stiffened panels, a new methodology is developed for estimating the critical local buckling load with the use of energy methods. The approach considers the stiffened panel segment located between two stiffeners, while the remaining panel is replaced by equivalent transverse and rotational springs of varying stiffness, which act as elastic edge supports. The buckling analysis of the segment provides an accurate and conservative prediction of the panel local buckling behavior. Consequently, the developed methodology is extended in the prediction of post-buckling response of stiffened panels where skin has undergone local buckling. The developed methodologies for calculating the critical buckling load are applied for sizing the wing members of an unconventional wing (multispar configuration) from composite materials. An efficient methodology based on fast Finite Element (FE) stress analysis combined to analytically formulated design criteria is presented for the initial sizing of a large scale composite component. A detailed comparison between optimized designs of conventional (2-spar) and three alternative wing configurations which comprise 4-, 5-, and 6-spars for the wing construction is performed. In order to understand the effect of different material properties, as well as the variation of maximum strain level allowed in the total wing mass, parametric analyses are performed for all wing configurations considered. It arises that under certain conditions the multispar configuration demonstrates significant advantages over the conventional design. This would lead to a mass reduction of 12%.
Książki na temat "Stiffened Composite Wing"
L, Phillips John. Structural analysis and optimum design of geodesically stiffened composite panels. Blacksburg, Va: Virginia Polytechnic Institute and State University, Center for Composite Materials and Structures, 1990.
Znajdź pełny tekst źródłaDetailed analysis and test correlation of a stiffened composite wing panel. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Stiffened Composite Wing"
Dähne, Sascha, i Christian Hühne. "Gradient Based Structural Optimization of a Stringer Stiffened Composite Wing Box with Variable Stringer Orientation". W Advances in Structural and Multidisciplinary Optimization, 814–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67988-4_62.
Pełny tekst źródłaBach, Tobias, i Christian Hühne. "Structural Optimization of Stiffened Composite Panels for Highly Flexible Aircraft Wings". W Advances in Structural and Multidisciplinary Optimization, 838–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67988-4_64.
Pełny tekst źródłaZhang, Bi, Ajay Shanker i Xuechen Ni. "FE Analysis of Composite Sandwich Panels with Different Shape Stiffeners Subjected to Extreme Wind Pressure". W Lecture Notes in Civil Engineering, 65–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4040-8_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Stiffened Composite Wing"
BROER, AGNES, NAN YUE, GEORGIOS GALANOPOULOS, RINZE BENEDICTUS, THEODOROS LOUTAS i DIMITRIOS ZAROUCHAS. "ON THE CHALLENGES OF UPSCALING DAMAGE MONITORING METHODOLOGIES FOR STIFFENED COMPOSITE AIRCRAFT PANELS". W Structural Health Monitoring 2021. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/shm2021/36237.
Pełny tekst źródłaMADAN, RAM, i JASON SUTTON. "Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels". W 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2292.
Pełny tekst źródłaYoo, J., i P. Hajela. "Optimal Design of Stiffened Composite Panel for Performance and Manufacturing Considerations". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2168.
Pełny tekst źródłaLovejoy, Andrew E. "Preliminary Weight Savings Estimate for a Commercial Transport Wing Using Rod-stiffened Stitched Composite Technology". W 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1873.
Pełny tekst źródłaCairns, Douglas, Daniel Samborsky, Darrin Haugen i John Mandell. "Fracture of skin/stiffener intersections in composite wind turbine structures". W 1998 ASME Wind Energy Symposium. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-62.
Pełny tekst źródłaVAN HOA, SUONG, BHARGAVI REDDY i DANIEL IOSIF ROSCA. "MANUFACTURING OF AIRCRAFT WING STIFFENERS USING 4D PRINTING OF COMPOSITES". W Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35752.
Pełny tekst źródłaHauris, Francis, i Onur Bilgen. "Induced Strain Actuation for Solid-State Ornithopters: Pitch and Heave Coupling". W ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3739.
Pełny tekst źródłaNewport, D., V. Egan, M. Aguanno, V. Lacarac, B. Estebe i Y. Murer. "Thermally Induced Flow Structures in Aircraft Wing Compartments". W ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56318.
Pełny tekst źródłaMandell, John F., Douglas S. Cairns, Daniel D. Samborsky, Robert B. Morehead i Darrin H. Haugen. "Prediction of Delamination in Wind Turbine Blade Structural Details". W ASME 2003 Wind Energy Symposium. ASMEDC, 2003. http://dx.doi.org/10.1115/wind2003-697.
Pełny tekst źródłaBolick, Ronnie L., Ajit D. Kelkar, Jeremy A. Taylor i Jitendra S. Tate. "Performance Evaluation of Unstitched, Stitched and Z-Pinned Textile Composites Under Static Loading". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81053.
Pełny tekst źródła